Все процессоры i7 по порядку. Линейки и маркировка современных процессоров Intel

Однажды один великий мудрец в капитанских погонах сказал, что без процессора компьютер работать не сможет. С тех пор каждый считает своим долгом найти тот самый процессор, благодаря которому его система будет летать как истребитель.

Из этой статьи вы узнаете:

Поскольку охватить все известные науки чипы мы просто не можем, хотим сосредоточиться на одном интересном семействе рода Интеловичей – Core i5. Очень уж у них характеристики интересные и производительность добротная.

Почему именно эта серия, а не i3 или i7? Все просто: отличный потенциал без переплаты за ненужные инструкции, которыми грешит седьмая линейка. Да и ядер поболее, нежели в Core i3. Вы вполне закономерно начнете спорить о поддержке и окажетесь частично правы, но 4 физических ядра умеют гораздо больше, чем 2+2 виртуальных.

История серии

Сегодня на повестке дня у нас сравнение процессоров Intel Core i5 разных поколений. Здесь хотелось бы затронуть такие насущные темы как , теплопакет и наличие припоя под крышкой. А если будет настроение, то еще и лбами между собой столкнем особо интересные камни. Итак, поехали.

Начать хочется с того, что рассматриваться будут исключительно настольные процессоры, а не варианты для ноутбука. Сравнение мобильных чипов будет, но в другой раз.

Таблица периодичности выхода выглядит следующим образом:

Поколение Год выпуска Архитектура Серия Сокет Количество ядер/потоков Кэш 3‐го уровня
1 2009 (2010) Hehalem (Westmere) i5‐7xx (i5‐6xx) LGA 1156 4/4 (2/4) 8 МБ (4 МБ)
2 2011 Sandy Bridge i5‐2xxx LGA 1155 4/4 6 МБ
3 2012 Ivy Bridge i5‐3xxx LGA 1155 4/4 6 МБ
4 2013 Haswell i5‐4xxx LGA 1150 4/4 6 МБ
5 2015 Broadwell i5‐5xxx LGA 1150 4/4 4 МБ
6 2015 Skylake i5‐6xxx LGA 1151 4/4 6 МБ
7 2017 Kaby Lake i5‐7xxx LGA 1151 4/4 6 МБ
8 2018 Coffee Lake i5‐8xxx LGA 1151 v2 6/6 9 МБ

2009

Первые представители серии увидели свет в далеком 2009 году. Они были созданы на 2 различных архитектурах: Nehalem (45 нм) и Westmere (32 нм). Самыми яркими представителями линейки стоит назвать i5‐750 (4x2,8 ГГц) и i5‐655K (3,2 ГГц). Последний дополнительно имел разблокированный множитель и возможность разгона, что говорило о его высокой производительности в играх и не только.

Отличия между архитектурами кроются в том, что Westmare построены по нормам техпроцесса 32 нм и обладают затворами 2 поколения. Да и энергопотребление у них меньше.

2011

В этом году свет увидело второе поколение процессоров – Sandy Bridge. Их отличительной чертой стало наличие встроенного видеоядра Intel HD 2000.

Среди обилия моделей i5‐2xxx особо хочется выделить ЦП с индексом 2500К. В свое время оно произвело настоящий фурор среди геймеров и энтузиастов, сочетая высокую частоту 3,2 ГГц с поддержкой Turbo Boost и невысокую стоимость. И да, под крышкой был припой, а не термопаста, что дополнительно способствовало качественному разгону камня без последствий.

2012

Дебют Ivy Bridge привнес 22‐нанометровый техпроцесс, более высокие частоты, новые контроллеры DDR3, DDR3L и PCI‐E 3.0, а также поддержку USB 3.0 (но только для i7).

Встроенная графика эволюционировала до Intel HD 4000.

Наиболее интересным решением на этой платформе стал Core i5‐3570K с разблокированным множителем и частотой до 3,8 ГГц в бусте.

2013

Поколение Haswell не привнесло ничего сверхъестественного кроме нового сокета LGA 1150, набора инструкций AVX 2.0 и новой графики HD 4600. По сути, весь упор был сделан на энергосбережение, чего компании удалось добиться.

А вот в качестве ложки дегтя значится замена припоя на термоинтерфейс, что здорово снижало разгонный потенциал топового i5‐4670K (и его обновленную версию 4690К из линейки Haswell Refresh).

2015

По сути это тот же Haswell, перенесенный на архитектуру 14 нм.

2016

Шестая итерация под именем Skylake привнесла обновленный сокет LGA 1151, поддержку ОЗУ типа DDR4, IGP 9‐го поколения, инструкций AVX 3.2 и SATA Express.

Среди процессоров стоит выделить i5‐6600K и 6400Т. Первый любили за высокие частоты и разблокированный множитель, а второй за низкую стоимость и крайне низкое тепловыделение 35 Вт несмотря на поддержку Turbo Boost.

2017

Эра Kaby Lake является самой спорной, поскольку не привнесла абсолютно ничего нового в сегмент десктопных процессоров кроме нативной поддержки USB 3.1. также эти камни напрочь отказываются запускаться на ОС Windows 7, 8 и 8.1, не говоря уже о более старых версиях.

Сокет остался прежним – LGA 1151. Да и набор интересных процессоров не изменился – 7600К и 7400T. Причины народной любви те же, что и у Skylake.

2018

Процессоры Goffee Lake в корне отличаются от своих предшественников. На смену четырем ядрам пришло 6, что ранее себе могли позволить лишь топовые версии i7 серии X. Размера кэша L3 увеличили до 9 МБ, а теплопакет в большинстве случаев не превышает 65 Вт.

Из всей коллекции наиболее интересной считается модель i5‐8600K за возможность разгона вплоть до 4,3 ГГц (правда всего 1 ядра). Однако публика предпочитает i5‐8400, как самый недорогой «входной» билет.

Вместо итогов

Если бы нас спросили, что бы мы предложили львиной доли геймеров, мы бы без запинки сказали, что i5‐8400. Преимущества очевидны:

  • стоимость ниже 190$
  • 6 полноценных физических ядер;
  • частота до 4 ГГц в Turbo Boost
  • теплопакет 65 Вт
  • комплектный вентилятор.

Дополнительно вам не придется подбирать «определенную» оперативную память, как для Ryzen 1600 (основной конкурент к слову), да и сами ядра в Intel. Вы лишаетесь дополнительных виртуальных потоков, однако практика показывает, что в играх они лишь снижают FPS, не привнося определенных корректив в геймплей.

Кстати еще, если не знаете где покупать, рекомендую обратить внимание на одни очень популярный и серьезного интернет‐магазин – заодно сможете там сориентироваться по ценам на i5 8400 , периодически сам здесь покупаю разные гаджеты.

В любом случае решать вам. До новых встреч, не забывайте подписываться на блога.

И еще новость для тех, кто следит (твердотельные диски) – такое редко случается.

Компания Intel прошла очень длинный путь развития, от небольшого производителя микросхем до мирового лидера по производству процессоров. За это время было разработано множество технологий производства процессоров, очень сильно оптимизирован технологический процесс и характеристики устройств.

Множество показателей работы процессоров зависит от расположения транзисторов на кристалле кремния. Технологию расположения транзисторов называют микроархитектурой или просто архитектурой. В этой статье мы рассмотрим какие архитектуры процессора Intel использовались на протяжении развития компании и чем они отличаются друг от друга. Начнем с самых древних микроархитектур и рассмотрим весь путь до новых процессоров и планов на будущее.

Как я уже сказал, в этой статье мы не будем рассматривать разрядность процессоров. Под словом архитектура мы будем понимать микроархитектуру микросхемы, расположение транзисторов на печатной плате, их размер, расстояние, технологический процесс, все это охватывается этим понятием. Наборы инструкций RISC и CISC тоже трогать не будем.

Второе, на что нужно обратить внимание, это поколения процессора Intel. Наверное, вы уже много раз слышали - этот процессор пятого поколения, тот четвертого, а это седьмого. Многие думают что это обозначается i3, i5, i7. Но на самом деле нет i3, и так далее - это марки процессора. А поколение зависит от используемой архитектуры.

С каждым новым поколением улучшалась архитектура, процессоры становились быстрее, экономнее и меньше, они выделяли меньше тепла, но вместе с тем стоили дороже. В интернете мало статей, которые бы описывали все это полностью. А теперь рассмотрим с чего все начиналось.

Архитектуры процессора Intel

Сразу говорю, что вам не стоит ждать от статьи технических подробностей, мы рассмотрим только базовые отличия, которые будут интересны обычным пользователям.

Первые процессоры

Сначала кратко окунемся в историю чтобы понять с чего все началось. Не будем углубятся далеко и начнем с 32-битных процессоров. Первым был Intel 80386, он появился в 1986 году и мог работать на частоте до 40 МГц. Старые процессоры имели тоже отсчет поколений. Этот процессор относиться к третьему поколению, и тут использовался техпроцесс 1500 нм.

Следующим, четвертым поколением был 80486. Используемая в нем архитектура так и называлась 486. Процессор работал на частоте 50 МГц и мог выполнять 40 миллионов команд в секунду. Процессор имел 8 кб кэша первого уровня, а для изготовления использовался техпроцесс 1000 нм.

Следующей архитектурой была P5 или Pentium. Эти процессоры появились в 1993 году, здесь был увеличен кэш до 32 кб, частота до 60 МГц, а техпроцесс уменьшен до 800 нм. В шестом поколении P6 размер кэша составлял 32 кб, а частота достигла 450 МГц. Тех процесс был уменьшен до 180 нм.

Дальше компания начала выпускать процессоры на архитектуре NetBurst. Здесь использовалось 16 кб кэша первого уровня на каждое ядро, и до 2 Мб кэша второго уровня. Частота выросла до 3 ГГц, а техпроцесс остался на том же уровне - 180 нм. Уже здесь появились 64 битные процессоры, которые поддерживали адресацию большего количества памяти. Также было внесено множество расширений команд, а также добавлена технология Hyper-Threading, которая позволяла создавать два потока из одного ядра, что повышало производительность.

Естественно, каждая архитектура улучшалась со временем, увеличивалась частота и уменьшался техпроцесс. Также существовали и промежуточные архитектуры, но здесь все было немного упрощено, поскольку это не является нашей основной темой.

Intel Core

На смену NetBurst в 2006 году пришла архитектура Intel Core. Одной из причин разработки этой архитектуры была невозможность увеличения частоты в NetBrust, а также ее очень большое тепловыделение. Эта архитектура была рассчитана на разработку многоядерных процессоров, размер кэша первого уровня был увеличен до 64 Кб. Частота осталась на уровне 3 ГГц, но зато была сильно снижена потребляемая мощность, а также техпроцесс, до 60 нм.

Процессоры на архитектуре Core поддерживали аппаратную виртуализацию Intel-VT, а также некоторые расширения команд, но не поддерживали Hyper-Threading, поскольку были разработаны на основе архитектуры P6, где такой возможности еще не было.

Первое поколение - Nehalem

Дальше нумерация поколений была начата сначала, потому что все следующие архитектуры - это улучшенные версии Intel Core. Архитектура Nehalem пришла на смену Core, у которой были некоторые ограничения, такие как невозможность увеличить тактовую частоту. Она появилась в 2007 году. Здесь используется 45 нм тех процесс и была добавлена поддержка технологии Hyper-Therading.

Процессоры Nehalem имеют размер L1 кэша 64 Кб, 4 Мб L2 кэша и 12 Мб кєша L3. Кэш доступен для всех ядер процессора. Также появилась возможность встраивать графический ускоритель в процессор. Частота не изменилась, зато выросла производительность и размер печатной платы.

Второе поколение - Sandy Bridge

Sandy Bridge появилась в 2011 году для замены Nehalem. Здесь уже используется техпроцесс 32 нм, здесь используется столько же кэша первого уровня, 256 Мб кэша второго уровня и 8 Мб кэша третьего уровня. В экспериментальных моделях использовалось до 15 Мб общего кэша.

Также теперь все устройства выпускаются со встроенным графическим ускорителем. Была увеличена максимальная частота, а также общая производительность.

Третье поколение - Ivy Bridge

Процессоры Ivy Bridge работают быстрее чем Sandy Bridge, а для их изготовления используется техпроцесс 22 нм. Они потребляют на 50% меньше энергии чем предыдущие модели, а также дают на 25-60% высшую производительность. Также процессоры поддерживают технологию Intel Quick Sync, которая позволяет кодировать видео в несколько раз быстрее.

Четвертое поколение - Haswell

Поколение процессора Intel Haswell было разработано в 2012 году. Здесь использовался тот же техпроцесс - 22 нм, изменен дизайн кэша, улучшены механизмы энергопотребления и немного производительность. Но зато процессор поддерживает множество новых разъемов: LGA 1150, BGA 1364, LGA 2011-3, технологии DDR4 и так далее. Основное преимущество Haswell в том, что она может использоваться в портативных устройствах из-за очень низкого энергопотребления.

Пятое поколение - Broadwell

Это улучшенная версия архитектуры Haswell, которая использует техпроцесс 14 нм. Кроме того, в архитектуру было внесено несколько улучшений, которые позволили повысить производительность в среднем на 5%.

Шестое поколение - Skylake

Следующая архитектура процессоров intel core - шестое поколение Skylake вышла в 2015 году. Это одно из самых значительных обновлений архитектуры Core. Для установки процессора на материнскую плату используется сокет LGA 1151, теперь поддерживается память DDR4, но сохранилась поддержка DDR3. Поддерживается Thunderbolt 3.0, а также шина DMI 3.0, которая дает в два раза большую скорость. И уже по традиции была увеличенная производительность, а также снижено энергопотребление.

Седьмое поколение - Kaby Lake

Новое, седьмое поколение Core - Kaby Lake вышло в этом году, первые процессоры появились в середине января. Здесь было не так много изменений. Сохранен техпроцесс 14 нм, а также тот же сокет LGA 1151. Поддерживаются планки памяти DDR3L SDRAM и DDR4 SDRAM, шины PCI Express 3.0, USB 3.1. Кроме того, была немного увеличена частота, а также уменьшена плотность расположения транзисторов. Максимальная частота 4,2 ГГц.

Выводы

В этой статье мы рассмотрели архитектуры процессора Intel, которые использовались раньше, а также те, которые применяются сейчас. Дальше компания планирует переход на техпроцесс 10 нм и это поколение процессоров intel будет называться CanonLake. Но пока что Intel к этому не готова.

Поэтому в 2017 планируется еще выпустить улучшенную версию SkyLake под кодовым именем Coffe Lake. Также, возможно, будут и другие микроархитектуры процессора Intel пока компания полностью освоит новый техпроцесс. Но обо всем этом мы узнаем со временем. Надеюсь, эта информация была вам полезной.

Об авторе

Основатель и администратор сайта сайт, увлекаюсь открытым программным обеспечением и операционной системой Linux. В качестве основной ОС сейчас использую Ubuntu. Кроме Linux интересуюсь всем, что связано с информационными технологиями и современной наукой.

3 января, в день рождения отца-основателя компании Гордона Мура (он родился 3 января 1929 г.), компания Intel анонсировала семейство новых процессоров Intel Core 7-го поколения и новые чипсеты Intel 200-й серии. У нас появилась возможность протестировать процессоры Intel Core i7-7700 и Core i7-7700K и сравнить их с процессорами предыдущего поколения.

Процессоры Intel Core 7-го поколения

Новое семейство процессоров Intel Core 7-го поколения известно под кодовым наименованием Kaby Lake, и новыми эти процессоры являются с некоторой натяжкой. Они, как и процессоры Core 6-го поколения, производятся по 14-нанометровому техпроцессу, и в их основе лежит одна и та же процессорная микроархитектура.

Напомним, что ранее, до выхода Kaby Lake, компания Intel выпускала свои процессоры в соответствии с алгоритмом «Tick-Tock» («тик-так»): раз в два года менялась процессорная микроархитектура и раз в два года менялся техпроцесс производства. Но смена микроархитектуры и техпроцесса были сдвинуты друг относительно друга на год, так что раз в год менялся техпроцесс, затем, через год, менялась микроархитектура, потом, опять через год, менялся техпроцесс, и т. д. Однако долго выдерживать столь быстрый темп компания не смогла и в итоге отказалась от этого алгоритма, заменив его на трехгодичный цикл. Первый год идет внедрение нового техпроцесса, второй год - внедрение новой микроархитектуры на базе существующего техпроцесса, а третий год - оптимизация. Таким образом, к «Tick-Tock» добавили еще год оптимизации.

Процессоры Intel Core 5-го поколения, известные под кодовым наименованием Broadwell, ознаменовали собой переход на 14-нанометровый техпроцесс («Tick»). Это были процессоры с микроархитектурой Haswell (с незначительными улучшениями), но производимые по новому 14-нанометровому техпроцессу. Процессоры Intel Core 6-го поколения, известные под кодовым наименованием Skylake («Tock»), производились по тому же 14-нанометровому техпроцессу, что и Broadwell, но имели новую микроархитектуру. А процессоры Intel Core 7-го поколения, известные под кодовым наименованием Kaby Lake, производятся по тому же 14-нанометровому техпроцессу (правда, теперь он обозначается «14+») и основаны на той же микроархитектуре Skylake, но все это оптимизировано и улучшено. В чем конкретно заключается оптимизация и что именно улучшено - пока это тайна, покрытая мраком. Данный обзор писался до официального анонса новых процессоров, и никакой официальной информации компания Intel предоставить нам не смогла, поэтому информации о новых процессорах пока еще очень мало.

Вообще, про день рождения Гордона Мура, который в 1968 году совместно с Робертом Нойсом основали компанию Intel, мы в самом начале статьи вспомнили не случайно. На протяжении многих лет этому легендарному человеку приписывали много такого, чего он никогда не говорил. Сначала его предсказание возвели в ранг закона («закон Мура»), потом этот закон стал основополагающим планом для развития микроэлектроники (эдакий аналог пятилетнего плана развития народного хозяйства СССР). Однако закон Мура при этом неоднократно приходилось переписывать и корректировать, поскольку реальность, к сожалению, спланировать можно далеко не всегда. Теперь нужно либо в очередной раз переписывать закон Мура, что, в общем-то, уже смешно, либо попросту забыть про этот так называемый закон. Собственно, в Intel так и поступили: уж раз он больше не работает, то его решили потихоньку предать забвению.

Впрочем, вернемся к нашим новым процессорам. Официально известно, что семейство процессоров Kaby Lake будет включать четыре отдельные серии: S, H, U и Y. Кроме того, будет и серия Intel Xeon для рабочих станций. Процессоры Kaby Lake-Y, ориентированные на планшеты и тонкие ноутбуки, а также некоторые модели процессоров серии Kaby Lake-U для ноутбуков уже были анонсированы ранее. А в начале января компания Intel представила лишь некоторые модели процессоров H- и S-серий. На настольные системы ориентированы процессоры S-серии, которые имеют LGA-исполнение и о которых мы будем говорить в этом обзоре. Kaby Lake-S имеют разъем LGA1151 и совместимы с материнскими платами на базе чипсетов Intel 100-й серии и новых чипсетов Intel 200-й серии. План выхода процессоров Kaby Lake-S нам не известен, но есть информация, что всего планируется 16 новых моделей для настольных ПК, которые традиционно составят три семейства (Core i7/i5/i3). Во всех процессорах для настольных систем Kaby Lake-S будет использоваться только графическое ядро Intel HD Graphics 630 (кодовое наименование Kaby Lake-GT2).

Семейство Intel Core i7 составят три процессора: 7700K, 7700 и 7700T. Все модели этого семейства имеют 4 ядра, поддерживают одновременную обработку до 8 потоков (технология Hyper-Threading) и имеют кэш L3 размером 8 МБ. Разница между ними заключается в энергопотреблении и тактовой частоте. Кроме того, топовая модель Core i7-7700K имеет разблокированный коэффициент умножения. Краткие спецификации процессоров семейства Intel Core i7 7-го поколения приведены далее.

Семейство Intel Core i5 составят семь процессоров: 7600K, 7600, 7500, 7400, 7600T, 7500T и 7400T. Все модели этого семейства имеют 4 ядра, но не поддерживают технологию Hyper-Threading. Размер их кэша L3 составляет 6 МБ. Топовая модель Core i5-7600K имеет разблокированный коэффициент умножения и TDP 91 Вт. Модели с буквой «T» имеют TDP 35 Вт, а обычные модели - TDP 65 Вт. Краткие спецификации процессоров семейства Intel Core i5 7-го поколения приведены далее.

Процессор Core i5-7600K Core i5-7600 Core i5-7500 Core i5-7600T Core i5-7500T Core i5-7400 Core i5-7400T
Техпроцесс, нм 14
Разъем LGA 1151
Количество ядер 4
Количество потоков 4
Кэш L3, МБ 6
Номинальная частота, ГГц 3,8 3,5 3,4 2,8 2,7 3,0 2,4
Максимальная частота, ГГц 4,2 4,1 3,8 3,7 3,3 3,5 3,0
TDP, Вт 91 65 65 35 35 65 35
Частота памяти DDR4/DDR3L, МГц 2400/1600
Графическое ядро HD Graphics 630
Рекомендованная стоимость $242 $213 $192 $213 $192 $182 $182

Семейство Intel Core i3 составят шесть процессоров: 7350K, 7320, 7300, 7100, 7300T и 7100T. Все модели этого семейства имеют 2 ядра и поддерживают технологию Hyper-Threading. Буква «T» в названии модели говорит о том, что ее TDP составляет 35 Вт. Теперь в семействе Intel Core i3 есть и модель (Core i3-7350K) с разблокированным коэффициентом умножения, TDP которой составляет 60 Вт. Краткие спецификации процессоров семейства Intel Core i3 7-го поколения приведены далее.

Чипсеты Intel 200-й серии

Одновременно с процессорами Kaby Lake-S компания Intel анонсировала и новые чипсеты Intel 200-й серии. Точнее, пока был представлен только топовый чипсет Intel Z270, а остальные будут анонсированы чуть позже. Всего же семейство чипсетов Intel 200-й серии будет включать пять вариантов (Q270, Q250, B250, H270, Z270) для десктопных процессоров и три решения (CM238, HM175, QM175) для мобильных процессоров.

Если сопоставлять семейство новых чипсетов с семейством чипсетов 100-й серии, то здесь все очевидно: Z270 - это новый вариант Z170, H270 идет на замену H170, Q270 заменяет Q170, а чипсеты Q250 и B250 заменяют Q150 и B150 соответственно. Единственный чипсет, которому не нашлось замены, это H110. В 200-й серии нет чипсета H210 или его аналога. Позиционирование чипсетов 200-й серии точно такое же, как у чипсетов 100-й серии: Q270 и Q250 ориентированы на корпоративный рынок, Z270 и H270 ориентированы на пользовательские ПК, а B250 - на SMB-сектор рынка. Впрочем, это позиционирование весьма условно, и у производителей материнских плат часто встречается собственное ви́дение позиционирования чипсетов.

Итак, что нового в чипсетах Intel 200-й серии и чем они лучше чипсетов Intel 100-й серии? Вопрос не праздный, ведь процессоры Kaby Lake-S совместимы и с чипсетами Intel 100-й серии. Так стоит ли покупать плату на Intel Z270, если плата, к примеру, на чипсете Intel Z170 окажется дешевле (при прочих равных)? Увы, говорить о том, что у чипсетов Intel 200-й серии есть серьезные преимущества, не приходится. Практически единственное отличие новых чипсетов от старых заключается в немного увеличенном количестве HSIO-портов (высокоскоростных портов ввода/вывода) за счет добавления нескольких портов PCIe 3.0.

Далее мы подробно рассмотрим чего и сколько добавлено в каждом чипсете, а пока вкратце рассмотрим особенности чипсетов Intel 200-й серии в целом, ориентируясь при этом на топовые варианты, в которых все реализовано по максимуму.

Начнем с того, что, как и чипсеты Intel 100-й серии, новые чипсеты позволяют комбинировать 16 процессорных портов PCIe 3.0 (PEG-портов) для реализации различных вариантов слотов PCIe. Например, чипсеты Intel Z270 и Q270 (как и их аналоги Intel Z170 и Q170) позволяют комбинировать 16 PEG-портов процессора в следующих комбинациях: x16, х8/х8 или x8/x4/x4. Остальные чипсеты (H270, B250 и Q250) допускают только одну возможную комбинацию распределения PEG-портов: x16. Также чипсеты Intel 200-й серии поддерживают двухканальный режим работы памяти DDR4 или DDR3L. Кроме того, чипсеты Intel 200-й серии поддерживают возможность одновременного подключения до трех мониторов к процессорному графическому ядру (точно так же, как и в случае чипсетов 100-й серии).

Что касается портов SATA и USB, то тут ничего не изменилось. Интегрированный SATA-контроллер обеспечивает до шести портов SATA 6 Гбит/с. Естественно, поддерживается технология Intel RST (Rapid Storage Technology), которая позволяет конфигурировать SATA-контроллер в режиме RAID-контроллера (правда, не на всех чипсетах) с поддержкой уровней 0, 1, 5 и 10. Технология Intel RST поддерживается не только для SATA-портов, но и для накопителей с интерфейсом PCIe (x4/x2, разъемы M.2 и SATA Express). Возможно, говоря о технологии Intel RST, имеет смысл упомянуть и новую технологию создания накопителей Intel Optane, но на практике тут пока говорить не о чем, готовых решений еще нет. В топовых моделях чипсетов Intel 200-й серии поддерживается до 14 USB-портов, из которых до 10 портов могут быть USB 3.0, а остальные - USB 2.0.

Как и в чипсетах Intel 100-й серии, в чипсетах Intel 200-й серии реализована поддержка технологии Flexible I/O, которая позволяет конфигурировать высокоскоростные порты ввода/вывода (HSIO) - PCIe, SATA и USB 3.0. Технология Flexible I/O позволяет конфигурировать некоторые HSIO-порты как порты PCIe или USB 3.0, а некоторые HSIO-порты - как порты PCIe или SATA. В чипсетах Intel 200-й серии в совокупности может быть реализовано 30 высокоскоростных портов ввода/вывода (в чипсетах Intel 100-й серии было 26 HSIO-портов).

Шесть первых высокоскоростных портов (Port #1 - Port #6) строго фиксированы: это порты USB 3.0. Следующие четыре высокоскоростных порта чипсета (Port #7 - Port #10) могут быть сконфигурированы либо как порты USB 3.0, либо как порты PCIe. Порт Port #10 при этом может использоваться и как сетевой порт GbE, то есть в сам чипсет встроен MAC-контроллер сетевого гигабитного интерфейса, а PHY-контроллер (MAC-контроллер в связке с PHY-контроллером образуют полноценный сетевой контроллер) может быть подключен только к определенным высокоскоростным портам чипсета. В частности, это могут быть порты Port #10, Port #11, Port #15, Port #18 и Port #19. Еще 12 портов HSIO (Port #11 - Port #14, Port #17, Port #18, Port #25 - Port #30) закреплены за портами PCIe. Еще четыре порта (Port #21 - Port #24) конфигурируются либо как порты PCIe, либо как порты SATA 6 Гбит/с. Порты Port #15, Port #16 и Port #19, Port #20 имеют особенность. Они могут быть сконфигурированы либо как как порты PCIe, либо как порты SATA 6 Гбит/с. Особенность заключается в том, что один порт SATA 6 Гбит/с можно сконфигурировать либо на порте Port #15, либо на порте Port #19 (то есть это один и тот же порт SATA #0, который может быть выведен либо на Port #15, либо на Port #19). Аналогично, еще один порт SATA 6 Гбит/с (SATA #1) выводится либо на Port #16, либо на Port #20.

В результате получаем, что всего в чипсете может быть реализовано до 10 портов USB 3.0, до 24 портов PCIe и до 6 портов SATA 6 Гбит/с. Правда, тут стоит отметить еще одно обстоятельство. Одновременно к этим 20 портам PCIe может быть подключено не более 16 PCIe-устройств. Под устройствами в данном случае понимаются контроллеры, разъемы и слоты. Для подключения одного PCIe-устройства может потребоваться один, два или четыре порта PCIe. К примеру, если речь идет о слоте PCI Express 3.0 x4, то это одно PCIe-устройство, для подключения которого требуется 4 порта PCIe 3.0.

Диаграмма распределения высокоскоростных портов ввода/вывода для чипсетов Intel 200-й серии показана на рисунке.

Если сравнить с тем, что было в чипсетах Intel 100-й серии, то изменений совсем мало: добавили четыре строго фиксированных порта PCIe (HSIO-порты чипсета Port #27 - Port #30), которые можно использовать для объединения Intel RST for PCIe Storage. Все остальное, включая нумерацию HSIO-портов, осталось неизменным. Диаграмма распределения высокоскоростных портов ввода/вывода для чипсетов Intel 100-й серии показана на рисунке.

До сих пор мы рассматривали функциональные возможности новых чипсетов вообще, без привязки к конкретным моделям. Далее, в сводной таблице, приводим краткие характеристики каждого чипсета Intel 200-й серии.

И для сравнения приводим краткие характеристики чипсетов Intel 100-й серии.

Диаграмма распределения высокоскоростных портов ввода/вывода для пяти чипсетов Intel 200-й серии показана на рисунке.

И для сравнения аналогичная диаграмма для пяти чипсетов Intel 100-й серии:

И последнее, что стоит отметить, рассказывая о чипсетах Intel 200-й серии: только в чипсете Intel Z270 реализована поддержка разгона процессора и памяти.

Теперь, после нашего экспресс-обзора новых процессоров Kaby Lake-S и чипсетов Intel 200-й серии, перейдем непосредственно к тестированию новинок.

Исследование производительности

Нам удалось протестировать две новинки: топовый процессор Intel Core i7-7700K с разблокированным коэффициентом умножения и процессор Intel Core i7-7700. Для тестирования мы использовали стенд следующей конфигурации:

Кроме того, чтобы можно было оценить производительность новых процессоров по отношению к производительности процессоров предыдущих поколений, мы также протестировали на описанном стенде процессор Intel Core i7-6700K.

Краткие спецификации тестируемых процессоров приведены в таблице.

Для оценки производительности мы использовали нашу новую методику с применением тестового пакета iXBT Application Benchmark 2017 . Процессор Intel Core i7-7700K был протестировал два раза: с настройками по умолчанию и в состоянии разгона до частоты 5 ГГц. Разгон производился путем изменения коэффициента умножения.

Результаты рассчитаны по пяти прогонам каждого теста с доверительной вероятностью 95%. Обращаем внимание, что интегральные результаты в данном случае нормируются относительно референсной системы, в которой тоже используется процессор Intel Core i7-6700K. Однако конфигурация референсной системы отличается от конфигурации стенда для тестирования: в референсной системе используется материнская плата Asus Z170-WS на чипсете Intel Z170.

Результаты тестирования представлены в таблице и на диаграмме.

Логическая группа тестов Core i7-6700K (реф. система) Core i7-6700K Core i7-7700 Core i7-7700K Core i7-7700K @5 ГГц
Видеоконвертирование, баллы 100 104,5±0,3 99,6±0,3 109,0±0,4 122,0±0,4
MediaCoder x64 0.8.45.5852, с 106±2 101,0±0,5 106,0±0,5 97,0±0,5 87,0±0,5
HandBrake 0.10.5, с 103±2 98,7±0,1 103,5±0,1 94,5±0,4 84,1±0,3
Рендеринг, баллы 100 104,8±0,3 99,8±0,3 109,5±0,2 123,2±0,4
POV-Ray 3.7, с 138,1±0,3 131,6±0,2 138,3±0,1 125,7±0,3 111,0±0,3
LuxRender 1.6 x64 OpenCL, с 253±2 241,5±0,4 253,2±0,6 231,2±0,5 207±2
Вlender 2.77a, с 220,7±0,9 210±2 222±3 202±2 180±2
Видеоредактирование и создание видеоконтента, баллы 100 105,3±0,4 100,4±0,2 109,0±0,1 121,8±0,6
Adobe Premiere Pro CC 2015.4, с 186,9±0,5 178,1±0,2 187,2±0,5 170,66±0,3 151,3±0,3
Magix Vegas Pro 13, с 366,0±0,5 351,0±0,5 370,0±0,5 344±2 312±3
Magix Movie Edit Pro 2016 Premium v.15.0.0.102, с 187,1±0,4 175±3 181±2 169,1±0,6 152±3
Adobe After Effects CC 2015.3, с 288,0±0,5 237,7±0,8 288,4±0,8 263,2±0,7 231±3
Photodex ProShow Producer 8.0.3648, с 254,0±0,5 241,3±4 254±1 233,6±0,7 210,0±0,5
Обработка цифровых фотографий, баллы 100 104,4±0,8 100±2 108±2 113±3
Adobe Photoshop CС 2015.5, с 521±2 491±2 522±2 492±3 450±6
Adobe Photoshop Lightroom СС 2015.6.1, с 182±3 180±2 190±10 174±8 176±7
PhaseOne Capture One Pro 9.2.0.118, с 318±7 300±6 308±6 283,0±0,5 270±20
Распознавание текста, баллы 100 104,9±0,3 100,6±0,3 109,0±0,9 122±2
Abbyy FineReader 12 Professional, с 442±2 421,9±0,9 442,1±0,2 406±3 362±5
Архивирование, баллы 100 101,0±0,2 98,2±0,6 96,1±0,4 105,8±0,6
WinRAR 5.40 СPU, с 91,6±0,05 90,7±0,2 93,3±0,5 95,3±0,4 86,6±0,5
Научные расчеты, баллы 100 102,8±0,7 99,7±0,8 106,3±0,9 115±3
LAMMPS 64-bit 20160516, с 397±2 384±3 399±3 374±4 340±2
NAMD 2.11, с 234±1 223,3±0,5 236±4 215±2 190,5±0,7
FFTW 3.3.5, мс 32,8±0,6 33±2 32,7±0,9 33±2 34±4
Mathworks Matlab 2016a, с 117,9±0,6 111,0±0,5 118±2 107±1 94±3
Dassault SolidWorks 2016 SP0 Flow Simulation, с 253±2 244±2 254±4 236±3 218±3
Скорость файловых операций, баллы 100 105,5±0,7 102±1 102±1 106±2
WinRAR 5.40 Storage, с 81,9±0,5 78,9±0,7 81±2 80,4±0,8 79±2
UltraISO Premium Edition 9.6.5.3237, с 54,2±0,6 49,2±0,7 53±2 52±2 48±3
Скорость копирования данных, с 41,5±0,3 40,4±0,3 40,8±0,5 40,8±0,5 40,2±0,1
Интегральный результат CPU, баллы 100 104,0±0,2 99,7±0,3 106,5±0,3 117,4±0,7
Интегральный результат Storage, баллы 100 105,5±0,7 102±1 102±1 106±2
Интегральный результат производительности, баллы 100 104,4±0,2 100,3±0,4 105,3±0,4 113,9±0,8

Если сравнить результаты тестирования процессоров, полученных на одном и том же стенде, то здесь все очень предсказуемо. Процессор Core i7-7700K при настройках по умолчанию (без разгона) чуть быстрее (на 7%), чем Core i7-7700, что объясняется разницей в их тактовой частоте. Разгон процессора Core i7-7700K до 5 ГГц позволяет получить выигрыш в производительности до 10% по сравнению с производительностью этого процессора без разгона. Процессор Core i7-6700K (без разгона) немного более производительный (на 4%) в сравнении с процессором Core i7-7700, что также объясняется разницей в их тактовой частоте. При этом модель Core i7-7700K на 2,5% производительнее модели предыдущего поколения Core i7-6700K.

Как видим, никакого скачка производительности новые процессоры Intel Core 7-го поколения не обеспечивают. По сути, это те же процессоры Intel Core 6-го поколения, но с чуть более высокими тактовыми частотами. Единственное преимущество новых процессоров заключается в том, что они лучше гонятся (речь, конечно, идет о процессорах K-серии с разблокированным коэффициентом умножения). В частности, наш экземпляр процессора Core i7-7700K, который мы не выбирали специально, без проблем разогнался до частоты 5,0 ГГц и абсолютно стабильно работал при использовании воздушного охлаждения. Удавалось запустить этот процессор и на частоте 5,1 ГГц, но в режиме стресс-тестирования процессора система зависала. Конечно, делать выводы по одному экземпляру процессора некорректно, но информация наших коллег подтверждает, что большинство процессоров Kaby Lake К-серии гонятся лучше, чем процессоры Skylake. Заметим, что наш образец процессора Core i7-6700K разгонялся в лучшем случае до частоты 4,9 ГГц, но стабильно работал только на частоте 4,5 ГГц.

Теперь посмотрим на энергопотребление процессоров. Напомним, что измерительный блок мы подключаем в разрыв цепей питания между блоком питания и материнской платой - к 24-контактному (ATX) и 8-контактному (EPS12V) разъемам блока питания. Наш измерительный блок способен измерять напряжение и силу тока по шинам 12 В, 5 В и 3,3 В разъема ATX, а также напряжение питания и силу тока по шине 12 В разъема EPS12V.

Под суммарной потребляемой мощностью во время выполнения теста понимается мощность, передаваемая по шинам 12 В, 5 В и 3,3 В разъема ATX и шине 12 В разъема EPS12V. Под потребляемой процессором мощностью во время выполнения теста понимается мощность, передаваемая по шине 12 В разъема EPS12V (этот разъем используется только для питания процессора). Однако нужно иметь в виду, что в данном случае речь идет об энергопотреблении процессора вместе с конвертером его напряжения питания на плате. Естественно, регулятор напряжения питания процессора имеет определенный КПД (заведомо ниже 100%), так что часть электрической энергии потребляется самим регулятором, а реальная мощность, потребляемая процессором, немного ниже измеряемых нами значений.

Результаты измерения для суммарной потребляемой мощности во всех тестах, за исключением тестов на производительность накопителя, представлены далее:

Аналогичные результаты измерения потребляемой процессором мощности таковы:

Интерес представляет, прежде всего, сравнение мощности энергопотребления процессоров Core i7-6700K и Core i7-7700К в режиме работы без разгона. Процессор Core i7-6700K имеет меньшее энергопотребление, то есть процессор Core i7-7700К немного более производительный, но у него и энергопотребление выше. Причем если интегральная производительность процессора Core i7-7700К выше на 2,5% в сравнении с производительностью Core i7-6700K, то усредненное энергопотребление процессора Core i7-7700К выше аж на 17%!

И если ввести такой показатель, как энергоэффективность, определяемый отношением интегрального показателя производительности к средней мощности энергопотребления (фактически, производительность в расчете на ватт потребленной энергии), то для процессора Core i7-7700К этот показатель составит 1,67 Вт -1 , а для процессора Core i7-6700К - 1,91 Вт -1 .

Впрочем, такие результаты получаются, только если сравнивать мощность энергопотребления по шине 12 В разъема EPS12V. А вот если считать полную мощность (что логичнее с точки зрения пользователя), то ситуация несколько иная. Тогда энергоэффективность системы с процессором Core i7-7700К составит 1,28 Вт -1 , а с процессором Core i7-6700К - 1,24 Вт -1 . Таким образом, энергоэффективность систем практически одинаковая.

Выводы

Никаких разочарований по поводу новых процессоров у нас нет. Никто и не обещал, что называется. Еще раз напомним, что речь идет не о новой микроархитектуре и не о новом техпроцессе, а всего лишь об оптимизации микроархитектуры и техпроцесса, то есть об оптимизации процессоров Skylake. Ожидать, что такая оптимизация может дать серьезный прирост производительности, конечно же, не приходится. Единственный наблюдаемый результат оптимизации заключается в том, что удалось немного повысить тактовые частоты. Кроме того, процессоры K-серии семейства Kaby Lake разгоняются лучше, чем их аналоги семейства Skylake.

Если говорить о новом поколении чипсетов Intel 200-й серии, то единственное, что отличает их от чипсетов Intel 100-й серии, это добавление четырех портов PCIe 3.0. Что это означает для пользователя? А ровным счетом ничего не означает. Ждать увеличения числа разъемов и портов на материнских платах не приходится, поскольку их и так уже чрезмерно много. В итоге функциональные возможности плат не изменятся, разве что удастся немного упростить их при проектировании: меньше придется придумывать хитроумных схем разделения, чтобы обеспечить работу всех разъемов, слотов и контроллеров в условиях нехватки линий/портов PCIe 3.0. Логично было бы предположить, что это приведет к снижению стоимости плат на чипсетах 200-й серии, но верится в это с трудом.

И в заключение несколько слов о том, имеет ли смысл менять шило на мыло. Компьютер на базе процессора Skylake и платы с чипсетом 100-й серии менять на новую систему с процессором Kaby Lake и платой с чипсетом 200-й серии нет никакого смысла. Это просто выбрасывание денег на ветер. Но если пришла пора менять компьютер по причине морального устаревания железа, то тут, конечно, имеет смысл обратить внимание на Kaby Lake и плату с чипсетом 200-й серии, причем смотреть надо в первую очередь на цены. Если система на Kaby Lake окажется сопоставима (при равной функциональности) по стоимости с системой на Skylake (и платой с чипсетом Intel 100-й серии), то смысл есть. Если же такая система окажется дороже, то в ней нет никакого смысла.

При выборе процессора от компании Intel встает вопрос: а какой чип от этой корпорации выбрать? У процессоров есть множество характеристик и параметров, которые влияют на их производительность. И в соответствии с ней и некоторыми особенностями микроархитектуры производитель дает соответствующее название. Нашей задачей является освещение этого вопроса. В этой статье вы узнаете, что именно означают названия процессоров Intel, а также узнаете про микроархитектуры чипов от этой компании.

Указание

Надо заранее отметить, что здесь не будут рассматриваться решения раньше 2012 года, так как технологии идут быстрыми темпами и эти чипы имеют слишком малую производительность при большом энергопотреблении, а также их трудно купить в новом состоянии. Также здесь не будут рассмотрены серверные решения, так как они имеют специфичную сферу применения и не предназначены для потребительского рынка.

Внимание номенклатура изложенная ниже может оказаться недействительной для процессоров старее, чем обозначенный выше срок.

А также при возникновении трудностей можете посетить сайт . И прочесть вот эту статью, где рассказано про . А если хотите узнать про интегрированную графику от Intel, то вам .

Тик-Так

У Intel особая стратегия выпуска своих «камней», называющаяся Тик-Так (Tick-Tock). Она заключается в ежегодных последовательных улучшениях.

  • Тик означает смену микроархитектуры, которая ведет к смене сокета, улучшению производительности и оптимизации энергопотребления.
  • Так означает , что ведет к уменьшению энергопотребления, возможности расположения большего числа транзисторов на чипе, возможному поднятию частот и увеличению стоимости.

Вот так выглядит данная стратегия у десктопных и ноутбучных моделей:

МОДЕЛЬ «ТИК-ТАК» У ДЕСКТОПНЫХ ПРОЦЕССОРОВ
МИКРОАРХИТЕКРУРА ЭТАП ВЫХОД ТЕХПРОЦЕСС
Nehalem Так 2009 45 нм
Westmere Тик 2010 32 нм
Sandy Bridge Так 2011 32 нм
Ivy Bridge Тик 2012 22 нм
Haswell Так 2013 22 нм
Broadwell Тик 2014 14 нм
Skylake Так 2015 14 нм
Kaby Lake Так+ 2016 14 нм

А вот у маломощных решений (смартфоны, планшеты, нетбуки, неттопы) платформы выглядят следующим образом:

МИКРОАРХИТЕКТУРЫ МОБИЛЬНЫЙ ПРОЦЕССОРОВ
КАТЕГОРИЯ ПЛАТФОРМА ЯДРО ТЕХПРОЦЕСС
Нетбуки/Неттопы/Ноутбуки Braswell Airmont 14 нм
Bay Trail-D/M Silvermont 22 нм
Топовые планшеты Willow Trail Goldmont 14 нм
Cherry Trail Airmont 14 нм
Bay Tral-T Silvermont 22 нм
Clower Trail Satwell 32 нм
Топовые/средние смартфоны/планшеты Morganfield Goldmont 14 нм
Moorefield Silvermont 22 нм
Merrifield Silvermont 22 нм
Clower Trail+ Satwell 32 нм
Medfield Satwell 32 нм
Средние/бюджетные смартфоны/планшеты Binghamton Airmont 14 нм
Riverton Airmont 14 нм
Slayton Silvermont 22 нм

Надо отметить, что Bay Trail-D сделана для десктопов: Pentium и Celeron с индексом J. А Bay Trail-M для – это мобильное решение и также будет обозначаться среди Pentium и Celeron своей буквой – N.

Судя по последним тенденциям компании, сама производительность прогрессирует достаточно медленно, в то время как энергоэффективность (производительность на единицу потребленной энергии) растет год от года, того и гляди скоро в ноутбуках будут такие же мощные процессоры, как и на больших ПК (хотя такие представители есть и сейчас).

В таблице кратко охарактеризованы основные ранние этапы развития процессоров Intel и их аналогов. Здесь же мы далее перейдем к рассмотрению процессоров Pentium.

Pentium - пятое поколение МП 22 марта 1993 года

Pentium представляет собой суперскалярный процессор с 32-битовой адресной шиной и 64-битовой шиной данных, изготовленный по субмикронной технологии с комплиментарной МОП структурой и состоящий из 3.1 миллионов транзисторов (на площади в 16.25 квадратных сантиметров). Процессор включает следующие блоки.

Таблица с характеристиками процессоров Intel, Cyrix, AMD

Тип процессора Поколение Год выпуска Разрядность шины данных Разрядность Первичная кэш память, Кбайт
Команды Данные
8088 1 1979 8 20 Нет
8086 1 1978 16 20 Нет
80286 2 1982 16 24 Нет
80386DX 3 1985 32 32 Нет
80386SX 3 1988 16 32 8
80486DX 4 1989 32 32 8
80486SX 4 1989 32 32 8
80486DX2 4 1992 32 32 8
80486DX4 5 1994 32 32 8 8
Pentium 5 1993 64 32 8 8
Р-ММХ 5 1997 64 32 16 16
Pentium Pro 6 1995 64 32 8 8
Pentium ll 6 1997 64 32 16 16
Pentium ll Celeron 6 1998 64 32 16 16
Pentium Xeon 6-7 1998
Pentium lll 6 1999 64 32 16 16
Pentium lV 7 2000 64 32 12 8
6 1997-1998 16-32-64 16-32-64 16-64
AMD K6, K6-2 6 1997-1999 16-64 16-64 32 32
AMD K6-3
AMD Athlon 7 1999 64 32 64 64
AMD Athlon 64 8 2003 64 64 64 64
Тип процессора Тактовая частота шины, МГц
8088 4.77-8 4.77-8
8086 4.77-8 4.77-8 0.029 3.0
80286 6-20 6-20 0.130 1.5
80386DX 16-33 16-33 0.27 1.0
80386SX 16-33 16-33 0.27 1.0
80486DX 25-50 25-50 1.2 1.0-0.8
80486SX 25-50 25-50 1.1 0.8
80486DX2 25-40 50-80
80486DX4 25-40 75-120
Pentium 60-66 60-200 3.1-3.3 0.8-0.35
Р-ММХ 66 166-233 4.5 0.6-0.35
Pentium Pro 66 150-200 5.5 0.35
Pentium ll 66 233-300 7.5 0.35-0.25
Pentium ll Celeron 66/100 266-533 7.5-19 0.25
Pentium Xeon 100 400-1700 0.18
Pentium lll 106 450-1200 9.5-44 0.25-0.13
Pentium lV 400 1.4-3.4 ГГц 42-125 0.18-0.09
Cyrix 6 x 86, Media GX, MX, Mll 75 187-233-300-333 3.5 0.35-0.25-0.22-0.18
AMD K6, K6-2 100 166-233- 8.8 0.35-0.25
AMD K6 3 450-550
AMD Athlon 266 500-2200 22 0.25
AMD Athlon 64 400 2 ГГц 54-106 0.13-0.09

Таблица с характеристиками процессоров Intel

Тип процессора Архитектура Год выпуска Кодовое наименование Количество транзисторов, в миллионах Ядро, мм L1-кэш, Кбайт L2-кэш, Кбайт
Pentium P5 1993 Р5 3.1 294 2 x 8 Внешн.
1994-1995 Р54 3.3 148 16 Внешн.
1995-1996 Р54С 3.3 83-91 16 Внешн.
ММХ 1996-1997 Р55С 4.5 140-128 2 x 16 Внешн.
PRO P6 1995-1997 Р6 5.5 306-195 2 x 8 256-1 Мбайт
Pentium 2 1997 Klamath 7.5 203 2 x 16 512
1998 Deschutes 7.5 131-118 2 x 16 512
Pentium 2 1999 Katmai 9.5 123 32 512
1999-2000 Coppermine 28.1 106-90 32 256
2001-2002 Tualatin 44.0 95-80 32 256
Pentium IV Netburst (IA-32e) 2000-2001 Willamette 42.0 217 8+12 256
2002-2004 Northwood 55.0 146-131 8+12 512
2004-2005 Prescott 125.0 122 16+12 1024
2005 Prescott 2M 169 135 12+16 2048
2005-2006 Cedar Mill 188.0 81 12+16 2048
Pentium D Intel Core 2005 Smithfield (2xPrescott) 230.0 206 12+6 x 2 2 x 1.0 Мбайт
2006 Presler (2xCedar Mill) 376.0 162 800 2 x 2.0 Мбайт
Core 2 Duo Intel Core 2006 Alendale 167 111 32 x 2 2-4 Мбайт
Core 2 Extreme 2006 Conroe 291 143 32 x 2 4 Мбайт
Xeon P5, P6, Netburst 1998 Ядро Pentium 2 Смотрите Pentium 2 512-1.0 Мбайт
1999-2000 Tanner Смотрите Pentium 3 512-2.0 Мбайт
2001 Foster Смотрите Pentium 4 512-1.0 Мбайт
Celeron P5, P6, Netburst 1998 Covington 7.5 131 32 Нет
1998-2000 Mendocino 19.0 154 32 128
2000 Coppermine 28.1 105/90 32 128
2002 Tualatin 44.0 80 32 256
2002 Willamette 42.0 217 8 128
2002-2004 Nordwood 55.0 131 8 128
Celeron D Netburst 2004-2006 Prescott 140.0 120 16 256
2004/2006 Cedar Mill 188.0 81 16 512
Itanium IA-64 1999 Merced/Itanic 30.0-220 2-4 Мбайт L3
Itanium 2 2003 Madison 410.0 6.0 Мбайт L3
Itanium (двухъядерный) 2006 Montecito 1720.0 596 16+16 Кбайт L1 1 Мбайт+256 Кбайт L2 24 Мбайт L3
Тип процессора Размер минимальной структуры, мкм Тактовая частота шины, МГц Тактовая частота процессора, МГц Потребляемая мощность, Вт Интерфейс
Pentium 0.8 60-66 60-66 14-16 Socket 4
0.6 50-66 75-120 8-12 Socket 5.7
0.35 66 133-200 11-15 Socket 7
ММХ 0.28 66 166-233 13-17 Socket 7
PRO 0.60-0.35 60-66 150-200 37.9 Socket 8
Pentium 2 0.35 66 233-300 34-43 Slot1
0.25 66-100 266-450 18-27 Slot 1
Pentium 3 0.25 100-133 450-600 28-34 Slot 1
0.18 100 650-1.33 ГГц 14-37 Slot 1/Socket 370
0.13 133 1.0-1.4 ГГц 27-32 S 370
Pentium IV 0.18 400 1.3-2.0 ГГц 48-66 Socket 423/478
0.13 Си 400-800 1.6-3.4 ГГц 38-109 Socket 478
0.09 533-800 2.66-3.8 ГГц 89-115 Socket 478/LGA775
0.09 800-1066 2.8-3.73 84-118 LGA775
0.065 800 3.0-3.8 80-86 LGA775
Pentium D 0.09 533-800 2.8-3.2 ГГц 115-130 LGA775
0.065 80-1066 3.4 ГГц 95-130 LGA775
Core 2 Duo 0.065 80-1066 1.8-2.66 ГГц 45-65 LGA775
Core 2 Extreme 0.065 1066 2.9-3.2 ГГц 75 LGA775
Xeon 0.18 100 400 Slot2
0.13 100-133 500-733
0.09-0.65 1.4-1.7 ГГц
Celeron 0.25 66 266-300 16-18 Slot 1
0.25 66 300-533 19-26 Socket 370/Slot 1
0.18 100 533-1.1 ГГц 11-33 Socket-370
0.13 100 1.0-1.4 27-35 S 370
0.18 400 1.7-1.8 ГГц 63-66 S478
0.13 400 2.0-2.8 ГГц 59-68 S 478
Celeron D 0.09 533 2.133-3.33 ГГц 73-84 S478/LGA775
0.065 533 3.33 ГГц 86 LGA775
Itanium 0.18 733-800 800-1.0 ГГц
Itanium 2 0.13 1.5 ГГц
Itanium (двухъядерный) 0.09 2 x 667 1.4-1.6 ГГц 75-104

Ядро Core

Основное исполнительное устройство. Производительность МП при тактовой частоте 66 МГц составляет около 112 миллионов команд в секунду (MIPS). Пятикратное повышение (по сравнению с 80486 DX) достигалось благодаря двум конвейерам, позволяющим выполнить одновременно несколько команд. Это два параллельных 5-ступенчатых конвейера обработки целых чисел, которые позволяют читать, интерпретировать, исполнять две команды одновременно.

  • а - Pentium ММХ, интерфейс Socket 7;
  • б - Celeron, упаковка Single Edge Processor Package (SEPP)/Slot 1;
  • в - AMD Athlon (формат Slot А);
  • г - основные компоненты процессора Pentium.

Команды над целыми числами могут выполняться за один такт синхронизации. Эти конвейеры неодинаковы: U-конвейер выполняет любую команду системы команд семейства 86; V-конвейер выполняет только «простые» команды, то есть команды, которые полностью встроены в схемы МП и не требуют микропрограммного управления (microcode) при выполнении.

Для постоянной загрузки этих конвейеров из кэш памяти требуется широкая полоса пропускания. Естественно, для отмеченного случая совмещенный буфер команд и данных не подходит. Pentium имеет разделенный буфер команд и данных - двухвходовые (атрибут RISC-процессоров). Обмен данными через кэш данных выполняется совершенно независимо от процессорного ядра, а буфер команд связан с ним через высокоскоростную 256-разрядную внутреннюю шину. Каждая кэш память имеет емкость 8 Кбайт, и они допускают одновременную адресацию. Поэтому программа в одном такте синхронизации может извлечь 32 байта (256: 8=32) команд и произвести два обращения к данным (32 х 2=64).

Предсказатель переходов (Branch Predictor)

Пытается угадать направление ветвления программы и заранее загрузить информацию в блоки предвыборки и декодирования команд.

Буфер адреса переходов (Branch Target Buffer ВТВ)

Буфер адреса переходов обеспечивает динамическое предсказание переходов. Он улучшает выполнение команд путем запоминания состоявшихся переходов (256 последних переходов) и с опережением выполняет наиболее вероятный переход при выборке команды ветвления. Если предсказание верно, то эффективность увеличивается, а если нет, то конвейер приходится сбрасывать полностью. Согласно данным Intel, вероятность правильного предсказания переходов в процессорах Pentium составляет 75-90 %.

Блок плавающей точки (Floating Point Unit)

Выполняет обработку чисел с плавающей точкой. Обработка графической информации, мультимедиа-приложений и интенсивное использование персонального компьютера для решения вычислительных задач требуют высокой производительности при выполнении операций с плавающей точкой. Аппаратная реализация (вместо микропрограммной) основных арифметических операций (+, х и /) выполняется автономными высокопроизводительными блоками, и 8-ступенчатый конвейер позволяет выдавать результаты через каждый такт.

Кэш память 1-го уровня (Level 1 cache)

Процессор имеет два банка памяти по 8 Кбайт, 1-й - для команд, 2-й - для Данных, которые обладают большим быстродействием, чем более емкая внешняя кэш память (L2 cache).

Интерфейс шины (Bus Interface

Передает в центральный процессор поток команд и данных, а также передает данные из центрального процессора.

В процессоре Pentium введен режим управления системой SMM (System Management Mode). Этот режим дает возможность реализовывать системные функции очень высокого уровня, включая управление питанием или защиту, прозрачные для операционной системы и выполняющихся приложений.

Pentium Pro (1 ноября 1995 года)

Pentium Pro (шестое поколение МП) имеет три конвейера, каждый из которых включает 14 ступеней. Для постоянной загрузки имеется высокоэффективный четырехвходовый кэш команд и высококачественная система предсказания ветвлений на 512 входов. Дополнительно для повышения производительности была применена буферная память (кэш) второго уровня емкостью 256 Кбайт, расположенная в отдельном чипе и смонтированная в корпусе центрального процессора. В результате стала возможной эффективная разгрузка пяти исполнительных устройств: два блока целочисленной арифметики; блок чтения (load); блок записи (store); FPU (Floating-Point Unit - устройство арифметических операций с плавающей точкой).

Pentium Р55 (Pentium ММХ)

8 января 1997 года Pentium ММХ -версия Pentium с дополнительными возможностями. Технология ММХ должна была добавить/расширить мультимедийные возможности компьютеров. ММХ объявлен в январе 1997 года, тактовая частота 166 и 200 МГц, в июне того же года появилась версия 233 МГц. Технологический 0.35-мкм процесс, 4.5 миллионов транзисторов.

Pentium 2 (7 мая 1997 года)

Процессор представляет собой модификацию Pentium Pro с поддержкой возможностей ММХ. Была изменена конструкция корпуса - кремниевую пластину с контактами заменили на картридж, увеличена частота шины и тактовая частота, расширены ММХ-команды. Первые модели (233-300 МГц) производились по 0.35-мкм технологии, следующие - по 0.25-мкм. Модели с частотой 333 МГц выпущены в январе 1998 года и содержали 7.5 миллионов транзисторов. В апреле того же года появились версии 350 и 400 МГц, а в августе - 450 МГц. Все Р2 имеют кэш второго уровня объемом 512 Кбайт. Есть также модель для ноутбуков - Pentium 2 РЕ, а для рабочих станций - Pentium 2 Хеоn 450 МГц.

Pentium 3 (26 февраля 1999 года)

РЗ - один из самых мощных и производительных процессоров Intel, но в своей конструкции он мало чем отличается от Р2, увеличена частота и добавлено около 70 новых команд (SSE). Первые модели объявлены в феврале 1999 года, тактовые частоты - 450.500, 550 и 600 МГц. Частота системной шины 100 МГц, 512 Кбайт кэша второго уровня, технологический 0.25-мкм процесс, 9.5 миллионов транзисторов. В октябре 1999 года также выпущена версия для мобильных компьютеров, выполненная по 0.18-мкм технологии с частотами 400.450, 500.550, 600.650, 700 и 733 МГц. Для рабочих станций и серверов существует РЗ Хеоn, ориентированный на системную логику GX с объемом кэша второго уровня 512 Кбайт, 1 Мбайт или 2 Мбайт.

Pentium 4 (Willamette, 2000 года; Northwood, 2002 года)

Семейства Pentium 2, Pentium 3 и Celeron имеют одинаковое строение ядра, отличаясь в основном размером и организацией кэша второго уровня и наличием набора команд SSE, появившегося в Pentium 3.

Достигнув частоты в 1 ГГц, Intel столкнулась с проблемами в дальнейшем наращивании частоты своих процессоров - Pentium 3 на 1.13 ГГц даже пришлось отзывать в связи с его нестабильностью.

  • a - Willamette, 0.18 мкм;
  • б - Northwood, 0.13 мкм;
  • в - Prescott, 0.09 мкм;
  • г - Smithfield (2 х Prescott 1М)

Проблема в том, что латентности (задержки), возникающие при обращении к тем или иным узлам процессора, в Р6 уже слишком велики. Таким образом появился Pentium IV - в его основе лежит архитектура, названная Intel NetBurst architecture.

Архитектура NetBurst имеет в своей основе несколько инноваций, в комплексе позволяющих добиться конечной цели - обеспечить запас быстродействия и будущую наращиваемость для процессоров семейства Pentium IV. В число основных технологий входят:

  • Hyper Pipelined Technology - конвейер Pentium IV включает 20 стадий;
  • Advanced Dynamic Execution - улучшенное предсказание переходов и исполнение команд с изменением порядка их следования (out of order execution);
  • Trace Cache - для кэширования декодированных команд в Pentium IV используется специальный кэш;
  • Rapid Execute Engine - ALU процессора Pentium IV работает на частоте, вдвое большей, чем сам процессор;
  • SSE2 - расширенный набор команд для обработки потоковых данных;
  • 400 МГц System Bus - новая системная шина.

Pentium IV Prescott (февраль 2004 года)

В начале февраля 2004 года Intel анонсировала четыре новых процессора Pentium IV (2.8; 3.0; 3.2 и 3.4 ГГц), основанных на ядре Prescott, которое включает ряд нововведений. Вместе с выпуском четырех новых процессоров Intel представила процессор Pentium IV 3.4 ЕЕ (Extreme Edition), основанный на ядре Northwood и имеющий 2 Мбайт кэш памяти третьего уровня, а также упрощенную версию Pentium IV 2.8 А, основанную на ядре Prescott с ограниченной частотой шины (533 МГц).

Prescott выполнен по технологии 90 нм, что позволило уменьшить площадь кристалла, причем число транзисторов было увеличено более чем в 2 раза. В то время как ядро Northwood имеет площадь 145 квадратных миллиметров и на нем размещено 55 миллионов транзисторов, ядро Prescott имеет площадь 122 квадратных миллиметров и содержит 125 миллионов транзисторов.

Перечислим некоторые отличительные особенности процессора.

Новые SSE-команд

Intel представила в Prescott новую технологию SSE3, которая включает 13 новых потоковых команд, которые увеличат производительность некоторых операций как только программы начнут их использовать. SSE3 является не просто расширением SSE2, так как добавляет новые команды, но и позволяет облегчить и автоматизировать процесс оптимизации готовых приложений средствами компилятора. Другими словами, разработчику программного обеспечения не надо будет переписывать код программы, необходимо будет только перекомпилировать ее.

Увеличенный объем кэш памят

Одним из важнейших (с точки зрения производительности) дополнений можно считать увеличенный до 1 Мбайт кэш второго уровня. Объем кэш памяти первого уровня также был увеличен до 16 Кбайт.

Улучшенная предвыборка данны

Ядро Prescott имеет улучшенный механизм предвыборки данных.

Улучшенный Hyperthreadin

В новую версию включено множество новых особенностей, способных оптимизировать многопоточное выполнение различных операций. Единственный недостаток новой версии заключается в необходимости перекомпиляции программного обеспечения и обновления операционной системы.

Увеличенная длина конвейер

Для увеличения рабочей частоты будущих процессоров ядро Prescott имеет увеличенную с 20 до 31 ступени длину конвейера. Увеличение длины конвейера негативно сказывается на производительности в случае неправильного предсказания ветвлений. Для компенсации увеличения длины конвейера была улучшена технология предсказания ветвлений.

Проблемы архитектуры NetBurst

Выпуск ядра Prescott, для которого Intel использовала технологический 90 нанометровый процесс, вскрыл ряд труднопреодолимых проблем. Первоначально NetBurst была объявлена специалистами Intel как архитектура с существенным запасом производительности, который со временем можно будет реализовать посредством постепенного наращивания тактовой частоты. Однако на практике оказалось, что увеличение тактовой частоты процессора влечет за собой неприемлемое возрастание тепловыделения и энергопотребления. Причем происходящее параллельно развитие технологии производства полупроводниковых транзисторов не позволяло эффективно бороться с ростом электрических и тепловых характеристик. В результате третье поколение процессоров с архитектурой NetBurst (Prescott) осталось в истории процессоров как одно из самых «горячих» (процессоры, построенные на этом ядре, могли потреблять и соответственно выделять до 160 Вт, получив кличку «кофеварки»), при том, что их тактовая частота не поднялась выше 3.8 ГГц. Высокое тепловыделение и энергопотребление вызвали множество смежных проблем. Процессоры Prescott требовали использования специальных материнских плат с усиленным стабилизатором напряжения и особых систем охлаждения с повышенной эффективностью.

Проблемы с высоким тепловыделением и энергопотреблением были бы не столь заметны, если бы не то обстоятельство, что при всем при этом процессоры Prescott не смогли продемонстрировать высокой производительности, благодаря которой можно было бы закрыть глаза на упомянутые недостатки. Заданный конкурирующими процессорами AMD Athlon 64 уровень быстродействия оказался для Prescott практически недостижимым, в результате этого данные центрального процессора стали восприниматься как провал Intel.

Поэтому не вызвало особого удивления, когда оказалось, что преемники NetBurst будут основываться на принципе эффективного энергопотребления, принятом в мобильной микроархитектуре Intel и воплощенном в семействе процессоров Pentium М.

Smithfield

По существу, ядро центрального процессора Smithfield - не более чем пара кристаллов Prescott 1М (90 нм), связанных вместе. Каждое ядро имеет собственную кэш память L2 (1 Мбайт), к которой может обратиться другое ядро через специальную интерфейсную шину. Результат - кристалл 206 квадратных миллиметров, содержащий 230 миллионов транзисторов.

Все двухъядерные чипы настольных персональных компьютеров, как ожидается, будут поддерживать технологии, введенные в последние месяцы 2004 года как инновации Pentium 4 Extreme Edition - ЕМ64Т, E1ST, XD bit и Vandepool:

  • технология «Увеличенная Память 64» (Enhanced Memory 64 - EM64T) обеспечивает расширения на 64 бита архитектуры х86; Enhanced Intel SpeedSTep (EIST) идентичен механизму, осуществленному в процессорах Intel мобильных персональных компьютеров, который позволяет процессору уменьшать его тактовую частоту, когда не требуется высокая загрузка, таким образом значительно сокращая нагрев центрального процессора и потребление мощности; XD bit - технология «невыполнимых битов» EXecute Disable Bit - NX-битов;
  • Vandepool-технология Intel (также известна как технология виртуализации - VT) позволяет одновременно выполнять несколько операционных систем и приложений в независимых разделах памяти, при этом единственная компьютерная система функционирует как несколько виртуальных машин.

В мае 2005 года вышли три чипа Pentium D Smithfield со скоростями 2.8, 3.0 и 3.2 ГГц и номерами моделей 820.830 и 840 соответственно.

Pentium D. Первые чипы Pentium D, представленные в мае 2005 года были построены на 90 нанометровой технологии Intel и имели номера моделей в ряду 800. Самый быстрый из выпущенных центральных процессоров имел скорость 3.2 ГГц. В начале 2006 года был выпущен образец Pentium D с номерами 900 и кодовым наименованием «Presler», изготовленный на технологическом 65 нанометров процессе Intel.

Чипы Presler включают пару ядер Cedar Mill. Однако, в отличие от предыдущего Pentium D Smithfield, здесь два ядра физически разделены. Включение двух дискретных кристаллов в единый пакет обеспечивает гибкость производства, позволяя использовать тот же самый кристалл как для одноядерного Cedar Mill, так и для двухядерного центрального процессора Presler. Кроме того, производственные расходы улучшаются, поскольку при обнаружении дефекта выбраковывается только один кристалл, а не двухядерный пакет.

  • а - Smithfield;
  • 6 - Presler.

Новая технология позволила увеличить не только тактовую частоту, но также и число транзисторов на кристалле. Как следствие, Presler имеет 376 миллионов транзисторов сравнительно с 230 миллионов для Smithfield. В то же самое время размер кристалла был уменьшен c 206 до 162 квадратных миллиметров. В результате удалось увеличить кэш память L2 Presler. В то время как его предшественник использовал две кэш памяти L2 по 1 Мбайт, процессоры Presler включают модули кэш памяти L2 по 2 Мбайта. Размещение нескольких ядер центрального процессора на одном кристалле имеет преимущество - кэш память может работать при намного более высокой частоте.

К весне 2006 года самый быстрый объявленный чип основного направления Pentium D был моделью 950 с частотой 3.4 ГГц. Считается, что Pentium D будет последним процессором, несущим фирменный знак Pentium, основного изделия Intel с 1993 года

Процессоры Pentium Хеоn

В июне 1998 года Intel начинает выпускать центральный процессор Pentium 11 Хеоn, работающий на частоте 400 МГц. Технически Хеоn представлял собой комбинацию технологий Pentium Pro и Pentium 2 и был разработан, чтобы предложить повышенную эффективность, требуемую в критических приложениях для рабочих станций и серверов. Используя интерфейс Slot 2, Хеоn имели почти вдвое больший размер, чем Pentium 2, прежде всего из-за увеличенной кэш памяти L2.

В ранних образцах чип снабжался кэш памятью L2 на 512 Кбайт или 1 Мбайт. Первый вариант был предназначен для рынка рабочих станций, второй - для серверов. Версия на 2 Мбайт вышла позже, в 1999 году Подобно центральному процессору Pentium 2 на 350-400 МГц, FSB (первичная шина) работала на частоте 100 МГц.

Основное усовершенствование сравнительно с Pentium 2 - кэш память L2 работала на частоте ядра центрального процессора, в отличие от конфигураций на основе Slot 1, которые ограничивали кэш L2 половиной частоты центрального процессора, что позволяло Intel использовать более дешевую память Burst SRAM в качестве кэша, вместо того чтобы применять обычную SRAM.

Другое ограничение, которое удалось преодолеть посредством Slot 2, был «двухпроцессорный предел». При использовании архитектуры SMP (симметрический мультипроцессор) процессор Pentium 2 оказался неспособен поддерживать системы с более чем двумя центральными процессорами, в то время как системы, основанные на Pentium 2 Хеоn, могли объединять четыре, восемь или более процессоров.

В дальнейшем были разработаны различные системные платы и чипсеты для АРМ и серверов - 440GX был построен на базе основной архитектуры чипсета 440ВС и предназначен для рабочих станций, a 450NX, с другой стороны, был разработан в основном для рынка серверных применений.

Вскоре после выхода Pentium 3 весной 1999 года был выпущен Pentium 3 Хеоn (кодовое имя Tanner). Это был базовый Pentium Хеоп с добавлением нового набора команд Streaming SIMD Extensions (SSE). Нацеленный на рынок серверов и рабочих станций, Pentium 3 Хеоп первоначально выпускался на 500 МГц и с кэш памятью L2 512 Кбайт (или 1.0-2.0 Мбайт). Осенью 1999 года Хеоn начал выпускаться с ядром «Cascade» (0.18 мкм), со скоростями, увеличивающимися от начальных 667 МГц до 1 ГГц к концу 2000 года

Весной 2001 года выпущен первый Хеоn на основе Pentium IV со скоростями 1.4, 1.5 и 1.7 ГГц. Базирующийся на ядре Foster, он был идентичен стандарту Pentium IV, за исключением разъема microPGA Socket 603.

Itanium (архитектура IA-64)

Данная архитектура была объявлена Intel в мае 1999 года Типичным представителем архитектуры является центральный процессор Itanium. Процессоры IA-64 располагают мощными вычислительными ресурсами, включая 128 регистров для целых чисел, 128 регистров с плавающей запятой, и 64 регистра предикации наряду с множеством регистров специального назначения. Команды должны группироваться для параллельного выполнения различными функциональными модулями. Набор команд оптимизирован, чтобы обеспечить вычислительные потребности криптографии, видеокодирования и других функций, которые все более необходимы следующим поколениям серверов и рабочих станций. В процессорах IA-64 также поддерживаются и развиваются ММХ-технологии и SIMD-расширения.

Архитектура IA-64 не является ни 64-битовой версией архитектуры Intel IA-32, ни адаптацией предложенной Hewlett-Packard архитектуры PA-RISC на 64 бита, а представляет собой полностью оригинальную разработку. IA-64 - это компромисс между CISC и RISC, попытка сделать их совместимыми - существуют два режима декодирования команд - VLIW и CISC. Программы автоматически переключаются в необходимый режим исполнения.

Основные инновационные технологии IA-64: длинные слова команд (long instruction words - LIW), предикаты команд (instruction predication), устранение ветвлений (branch elimination), предварительное чтение данных (speculative loading) и другие ухищрения для того, чтобы «извлечь больше параллелизма» из кода программ.

Таблица основных различий архитектур IA-32 и IA-64

Основная проблема архитектуры IА-64 заключается в отсутствии встроенной совместимости с х86 кодом, что не позволяет процессорам IA-64 эффективно работать с программным обеспечением, разработанным за последние 20-30 лет. Intel оборудует свои процессоры IA-64 (Itanium, Itanium 2 и так далее) декодером, который преобразует инструкции х86 в команды IA-64.