Замечания по установке видеокарты для шины AGP. Сравнения AGP и Agp карты

Появление шины РСI не сняло всех проблем по качественному выводу визуальной информации для 3-х мерных изображений, "живого" видео. Здесь уже требовались скорости в сотни Мбайт/сек, а нагрузка на PCIсо стороны разных устройств: жестких дисков, сетевых карт и других высокоскоростных устройств привели к тому, что пропускной способности локальной шиныPCIдля удовлетворения всех этих требований начало явно недоставать.

В 1996г. фирма Intel разработала новую шину AGP (Accelerated Graphics Port – порт ускоренной графики), предназначенную только для связи ОЗУ и процессора с видеокартой монитора. Эта шина обеспечивает пропускную способность в сотни Мбайт/сек. Она непосредственно связывает видеокарту с ОЗУ минуя шину РСI (рис. 2)

Характеристики шины AGP

Год создания: 1996

Разрядность шины данных: 32;

Частота шины: 66 МГц;

Раздельные линии адреса и данных (в отличие от PCI);

Конвейеризация операций обращения к памяти;

Максимальная пропускная способность: 532 МБ/с;

Спецификации AGP 2x, AGP4x,AGP8x– возможность пересылать несколько блоков данных за один такт шины. Максимальная пропускная способностьAGP8x: 2 ГБ/с;

Важной особенностью шины AGPявляется конвейеризация операций обращения к памяти. В обычных неконвейерных шинах (например, в шине PCI) при выполнении запроса чтения/записи ячеек оперативной памяти шина простаивает, ожидая завершения этой операции. Конвейерный доступ AGP позволяет в это время передавать следующие запросы, а потом получить ответы на эти запросы в виде непрерывного потока данных.

Шина AGP может объединять в один пакет до 256 запросов чтения/записи ячеек оперативной памяти и получить ответы на них, объединенные в пакет длиной до 256 32-разрядных слов данных.

Графическая подсистема

AGPпредназначалась для того, чтобы графические карты могли хранить необходимые им данные (текстуры) не только в своей дорогой локальной памяти, установленной на борту, но и в дешевой системной памяти компьютера. При этом они (карты) могли иметь меньший объем этой самой локальной памяти и, соответственно, дешевле стоить.

Ускоренный графический порт (AGP) -- это расширение шины PCI, чье назначение -- обработка больших массивов данных 3D графики. Intel разрабатывала AGP для решения двух проблем перед внедрением 3D графики на PCI. Во-первых, 3D графике требуется как можно больше памяти информации текстурных карт (texture maps) и z-буфера (z-buffer), который содержит информацию, относящуюся к представлению глубины изображения.

Разработчики PC имели ранее возможность использовать системную память для хранения информации о текстурах и z-буфера, но ограничением в этом подходе была передача такой информации через шину PCI. Производительность графической подсистемы и системной памяти ограничиваются физическими характеристиками шины PCI. Кроме того, ширина полосы пропускания PCI, или ее емкость, не достаточна для обработки графики в режиме реального времени. Чтобы решить эти проблемы, Intel разработала AGP.

Если определить кратко, что такое AGP, то это - прямое соединение между графической подсистемой и системной памятью. Это решение позволяет обеспечить значительно лучшие показатели передачи данных, чем при передаче через шину PCI, и явно разрабатывалось, чтобы удовлетворить требованиям вывода 3D графики в режиме реального времени.

Через AGP можно подключить только один тип устройств - это графическая плата. Графические системы, встроенные в материнскую плату и использующие AGP, не могут быть улучшены.

Скорость, с которой мы получаем информацию на наши экраны, и количество информации, которое выходит из видеоадаптера и передается на экран - все зависит от трех факторов:

Разрешение вашего монитора

Количество цветов

Частота, с которой происходит обновление экрана

Современная видеокарта – это, по сути, второй самостоятельный компьютер внутри персонального компьютера. Причем, когда пользователь играет в 3-D игру, процессор видеокарты фактически выполняет большую часть работы, а центральный процессор отступает на второй план. Более мощный графический процессор создает более реалистическое изображение.

Для увеличения производительности графической подсистемы настолько, насколько это возможно, приходится снижать до минимума все препятствия на этом пути. Графический контроллер производит обработку графических функций, требующих интенсивных вычислений, в результате разгружается центральный процессор системы. Отсюда следует, что графический контроллер должен оперировать своей собственной, можно даже сказать частной, местной памятью. Тип памяти, в которой хранятся графические данные, называется буфер кадра (frame buffer). В системах, ориентированных на обработку 3D-приложений, требуется еще и наличие специальной памяти, называемой z-буфер (z-buffer), в котором хранится информация о глубине изображаемой сцены. Также, в некоторых системах может иметься собственная память текстур (texture memory), т.е. память для хранения элементов, из которых формируются поверхности объекта. Наличие текстурных карт ключевым образом влияет на реалистичность изображения трехмерных сцен.

В принципе, для работы современных офисных приложений и просмотра видеофильмов вполне хватает 8Мбайт видеопамяти для разрешения 800х600 или 16 Мбайт для разрешения 1024х768. Вся остальная память, свыше этого, которая имеется сегодня в современных видеоадаптерах, тратится на сторонние нужды, в частности, для поддержки экранной графики операционной системы Windows (особенно в WindowsVista).

Использование 64, 128, 256 и 512 МБайт видеопамяти связано, в первую очередь, с интересами «игроманов». Следует сказать, что стремительное увеличение объема видеопамяти в настоящее время не связано с таким же прогрессом повышения разрешения изображения на экране. Практически уже достигнут потолок для традиционных систем отображения видеоинформации. Основная же причина все большего наращивания оперативной памяти видеоадаптера состоит в том, что на плате видеоадаптера теперь находится видеопроцессор, который может самостоятельно, по управляющим командам центрального процессора, строить объемные изображения (они же -3D), а это требует необычайно много ресурсов для хранения промежуточных результатов вычислений и образцов текстур, которыми заливаются условные плоскости моделируемых фигур.

Однако, даже для офисных приложений, сегодня, если в операционной системе Windowsиспользуется интерфейсDirectX9 или 10, объем памяти видеокарты долэен быть не менее 128 МБайт.

Первоначально, видеокарты строились по следующим принципам. Все, что записывается центральным процессором в видеопамять, по строго определенным алгоритмам преобразуется в аналоговый видеосигнал, который подается на монитор. Таким образом, центральному процессору необходимо самому рассчитать параметры всех точек, которые должны быть в данный момент отражены на экране, и загрузить все данные в видеопамять. Любое изменение на экране, даже если это след мыши, это результат работы центрального процессора. Соответственно, чем больше используемое разрешение и количество цветов, тем больше процессор затрачивает времени на расчет всех точек формируемого растра.

Так как персональный компьютер с течением времени стал неразрывно связан с графическим интерфейсом Windows, и различными трехмерными играми, то разработчики «железа» предприняли ряд шагов по совершенствованию стандартной видеокарты, чтобы избавить центральный процессор от лишней работы по прорисовке элементарных изображений. Подобные устройства получили название графических ускорителей, или иначе графических акселераторов (они же видео- или графические процессоры).

Сегодня компьютерные технологии развиваются столь быстрыми темпами, что владельцы персональных компьютеров просто не успевают закончить модернизацию своего компьютера, когда производители выпускают очередную новинку. Кажется, что процесс модернизации никогда не закончится. То же самое случилось, когда на материнских платах появился AGP-разъем. Почему этот разъем так быстро ушел в небытие? Какова история его появления?

AGP-разъем: история появления

AGP представляет собой специализированный разъем для подключения к материнской плате видеокарты. Соответственно, он устанавливается на этой плате. Аббревиатура AGP на английском языке расшифровывается как Accelerated Graphics Port,что если переводить дословно означает «быстрый графический порт». Почему же его назвали именно так, и как он появился? Вплоть до 1996 в качестве графического интерфейса, используемого производителями видеокарт, выступал PCI. Однако скорость обмена информацией при использовании этой графической шины была достаточно мала. Требования, которые постепенно возникали у разработчиков программного обеспечения, не могли быть целиком и полностью удовлетворены при помощи этого интерфейса, это не говоря уже о разработках на будущие периоды. По этой причине компания Intel разрабатывает AGP-разъем и устанавливает его на материнскую плату. Вместе с тем разрабатываются и видеокарты с таким интерфейсом. Двадцать лет спустя появляется новый комплект материнской платы и соответствующей ей видеокарты.

Видеокарта с разъемом AGP: преимущества

Если рассуждать о преимуществах, которые приобрели компьютеры, обладающие AGP-разъемом, то стоит отметить, что пропускная способность данной шины сразу была увеличена в два раза. Благодаря чему удалось сделать это? Во-первых, за счет увеличения частоты обмена по данному интерфейсу. Разъем AGP позволил увеличить скорость обмена информацией до 66 мГц. Это дало возможность создавать более мощные видеокарты. Программисты стали разрабатывать под этот интерфейс соответствующие приложения. Примерно в это же время появляются новые программные продукты, в том числе и игровые. Все эти преимущества и привели к тому, что владельцы персональных компьютеров занялись модернизацией собственного оборудования. Однако для этого приходилось выполнять замену не только материнской платы и процессора, но и видеокарты. Для тех пользователей, которые в то время не могли себе позволить провести полную модернизацию персонального компьютера, был разработан переходник с AGP. Это дало возможность на какое-то время сэкономить средства на замену видеокарты. Со временем, конечно, так или иначе, пришлось сделать полную замену оборудования компьютера.

Какие существуют виды разъемов AGP?

Интерфейс AGP просуществовал вплоть до 2004 года. Разработчики за восемь лет значительно модернизировали данный интерфейс, увеличивая его производительность. Если говорить о разрядности шины, то она во всех вариантах используется 32-разрядная. Немного позже появились компьютеры, имеющие 64-битную шину. По этой причине разработчикам пришлось использовать 32-разрядный интерфейс и искать возможность повышать производительность видеокарт и самого интерфейса AGP. Какой же выход из сложившейся ситуации был найден? Для решения проблемы разработчики использовали пакетную передачу данных. Так, например, первая карта AGP-1за один такт передавала один пакет информации. Однако этого оказалось недостаточно, поэтому практически сразу была разработана AGP-1, которая за такт передавала два пакета. Скорость передачи данных при этом была увеличена в два раза. Два года спустя разработчики выпустили уже AGP-4. Скорость по сравнению с картой предшественницей была увеличена еще в два раза. Производительность или пропускная способность интерфейса AGP-4при этом составляла один гигабит в секунду. Однако и этого оказалось недостаточно. Несколько лет спустя в продаже появились видеокарты AGP-8, которые оперировали уже восемью блоками информации за такт и пропускным каналом интерфейса в два гигабита за секунду. При этом появилась проблема передачи мощности через разъем AGP. Слот AGP-8 не позволял обеспечить хороший контакт при передаче большой мощности по питанию видеокарты. Специально для мощных игровых видеокарт разработчики создали слот AGP Pro. Это была последняя модификация данного интерфейса.

Дальнейшая история слота AGP

Что бы там ни было, со временем стало понятно, что компьютерам требуется новый интерфейс, который смог бы заменить собой разъем AGP. Материнской плате был нужен новый слот, который, с одной стороны, мог бы иметь большую пропускную способность, и с другой стороны – обеспечить все возрастающую потребляемую мощность. На смену AGP, начиная с 2004 года, приходит PCI Express. Преимущество этого слота заключалось в возможности работы с 64-бытными шинами, что значительно повышает возможность работы с графикой. Примерно в это же время на рынке начинают появляться мониторы больших размеров. Чтобы качественно отображать такое изображение на мониторе, необходимо было работать с большими разрешениями. Производители компьютерных игр постоянно разрабатывают продукцию, которая требует более высоких системных требований к видеосистеме компьютера. Разъем AGP в этом случае безнадежно уходит в прошлое. Действительно ли для данного интерфейса все так плохо? Куда исчезнет слот AGP? Можно ли на сегодняшний день сказать, что эра AGP ушла безвозвратно? Возможно, в скором времени наступят времена, когда будет невозможно найти материнскую плату или видеокарту с таким разъемом, разве что на компьютерной барахолке или в специализированном музее. Сегодня данный интерфейс весьма активно используется. Оборудование с таким слотом уже давно перестали выпускать, да и последние запасы на складах в скором времени совсем иссякнут. А те экземпляры, которые установлены в компьютерах сегодня, постепенно приходят в негодность. Тогда люди в скором времени начнут забывать о слотах AGP. Но до этого еще далеко.

Использование слота AGP в современных условиях

Как ранее уже было сказано, компьютеры с интерфейсом AGP невозможно использовать в тех устройствах, которые работают с графическими, видео- и игровыми приложениями. Однако количество компьютеров, которые работают с такими приложениями не так велико. Самый большой сегмент занимают компьютеры, работающие с офисными приложениями. Для них скорость видеопотока не слишком важна. Достаточно много компьютеров, имеющих AGP-слот, работают и сегодня. А поскольку надежность таких машин довольно велика, многие компании не спешат отказываться от их использования в своих офисах. Скорее всего, такая ситуация еще будет продолжаться не один год. Рано или поздно, AGP, конечно, будет вытеснен более современным и новым слотом, однако для этого потребуется определенное время.

Компромиссное решение конструкторов материнских плат

Производители компьютерной техники предполагали, что замена слота AGP на PCI-Express будет идти довольно быстрыми темпами. Но этого не произошло. На последнем этапе своего развития AGP-карты оказались настолько хороши, что многие пользователи и по сей день не спешат от них отказываться. С другой стороны, подобная модернизация требует довольно много средств. Для пользователей это сдерживающий фактор. Учитывая это, производители материнских плат решили пойти на компромисс. Они приняли решение установить на материнской плате одновременно два слота – AGP и PCI Express.Однако, одновременно использовать оба слота невозможно. Пользователь мог выбрать тот слот, видеокарта на который у него имелась.

Возможность использования разъема AGP в других целях

Многих пользователей интересует вопрос о том, какие устройства можно подключить к разъему AGP, поскольку довольно часто в описанных выше компьютерных системах, данный слот освобождается и не используется. Стоит понимать, что данный интерфейс был разработан специально для управления видеокартой. Можно ли использовать его для других целей? В принципе, это возможно, однако для этого необходимо переделать управление данным интерфейсом. Вряд ли эффективность такого управления увеличится. Существует множество других интерфейсов, предназначенных для решения такого рода задач.

The Accelerated Graphics Port (also called Advanced Graphics Port) is a high-speed point-to-point channel for attaching a single device (generally a graphics card) to a computers motherboard, primarily to assist in the acceleration of 3D computer graphics. Many classify AGP as a type of computer bus, but this is something of a misnomer since buses generally allow multiple devices to be connected, while AGP does not. AGP originated from Intel, and it was first built into a chipset for the Pentium II microprocessor. AGP cards generally slightly exceed PCI cards in length and can be recognized by a typical hook at the inner end of the connector, which does not exist on PCI cards. Nowdays AGP is almost replaced by PCI-Express.

  • AGP 1.0: 3.3 volts signaling with speed multipliers 1x (267MB/s), 2x (533MB/s)
  • AGP 2.0: 1.5 volts signaling with speed multipliers 1x (267MB/s), 2x (533MB/s), 4x (1067MB/s)
  • AGP 3.0: 0.8 volts signaling with speed multipliers 4x (1067MB/s), 8x (2133MB/s)

In addition, in the world of workstations different AGP Pro cards exist with extra connectors which allow card to draw more power. In order to make life easier, the AGP standard defines some backward compatibilty. The AGP 1.0 specification requires that all implementations support the 1x speed multiplier at 3.3 volts. By default, when the AGP 1.0 machine powers up it selects the fastest speed multiplier supported by both the video card and the motherboard. If they both support 2x then they will run at 2x. Otherwise they run at 1x which is always implemented by all AGP 1.0 video cards and motherboards. The AGP 2.0 specification has a similar requirement. 2x and 1x support at 1.5 volts are required and 4x support is optional. The AGP 3.0 specification requires support for 8x. The 3.0 specification isn"t as clear as the 1.0 and 2.0 specifications on the subject of requiring the lower multiplier but all AGP 3.0 almost all implementations support both 8x and 4x. As a result, you can completely ignore speed multipliers when you"re checking for compatibility between an AGP video card and an AGP motherboard. If the video card and motherboard both support the same signaling voltage then there is always at least one common speed multiplier supported by both at that voltage. You only need to make sure that the video card and motherboard have at least one signaling voltage in common.

AGP cards and slots

Graphics Card Types Connector Type* Description
AGP 3.3V Card 3.3V slot Supports only 3.3V signaling. Available speeds 1x, 2x.
AGP 1.5V Card 1.5V slot Supports only 1.5V signaling. Available speeds 1x, 2x, 4x.
Universal AGP Card Double slotted Supports 3.3V and 1.5V signaling. Available speeds 1x, 2x at 3.3V and 1x, 2x, 4x at 1.5V.
AGP 3.0 Card 1.5V slot Supports only 0.8V signaling. Available speeds 4x, 8x.
Universal 1.5V AGP 3.0 Card 1.5V slot Supports 1.5V and 0.8V signaling. Available speeds 1x, 2x, 4x at 1.5V and 4x, 8x at 0.8V.
Universal AGP 3.0 Card Double slotted Supports AGP 3.3v, 1.5V, and 0.8V signaling. Available speeds 1x, 2x at 3.3V and 1x, 2x, 4x at 1.5V and 4x, 8x at 0.8V.

*Different slots connectors have different position of key

The AGP connectors on the motherboard are keyed to prevent insertion of AGP cards which would be damaged if plugged in. An AGP 3.3V motherboard connector can only accept AGP cards which have the 3.3V slot. If you try to insert a card without a 3.3V slot into an AGP 3.3V motherboard connector, the card will bump into the connector key and cannot be inserted. Likewise an AGP 1.5V motherboard connector can only accept AGP cards with the 1.5V slot. An AGP universal motherboard connector has no keys and therefore can accept any kind of AGP card. An AGP card with both voltage slots can be plugged into any kind of AGP motherboard connector. If you can plug an AGP card into an AGP motherboard connector, then neither the card nor the motherboard will be damaged (assuming they obey the AGP specifications).

AGP pinout

Universal Boards

Pin # Side A Side B Side A Side B Side A Side B
1 +12V OVRCNT# +12V OVRCNT# +12V OVRCNT#
2 TYPEDET# +5.0V TYPEDET# +5.0V TYPEDET# +5.0V
3 Reserved 5.0V Reserved 5.0V Reserved 5.0V
4 USB- USB+ USB- USB+ USB- USB+
5 Ground Ground Ground Ground Ground Ground
6 INTA# INTB# INTA# INTB# INTA# INTB#
7 RST# CLK RST# CLK RST# CLK
8 GNT# REQ# GNT# REQ# GNT# REQ#
9 VCC 3.3 VCC 3.3 VCC 3.3 VCC 3.3 VCC 3.3 VCC 3.3
10 ST1 ST0 ST1 ST0 ST1 ST0
11 Reserved ST2 Reserved ST2 Reserved ST2
12 PIPE# RBF# PIPE# RBF# PIPE# RBF#
13 Ground Ground Ground Ground Ground Ground
14 Reserved Reserved WBF# Reserved WBF# Reserved
15 SBA1 SBA0 SBA1 SBA0 SBA1 SBA0
16 VCC 3.3 VCC 3.3 VCC 3.3 VCC 3.3 VCC 3.3 VCC 3.3
17 SBA3 SBA2 SBA3 SBA2 SBA3 SBA2
18 Reserved SB_STB SB_STB# SB_STB SB_STB# SB_STB
19 Ground Ground Ground Ground Ground Ground
20 SBA5 SBA4 SBA5 SBA4 SBA5 SBA4
21 SBA7 SBA6 SBA7 SBA6 SBA7 SBA6
22 Key Key Reserved Reserved Reserved Reserved
23 Key Key GROUND GROUND GROUND GROUND
24 Key Key Reserved 3.3Vaux Reserved 3.3Vaux
25 Key Key Vcc 3.3 Vcc 3.3 Vcc 3.3 Vcc 3.3
26 AD30 AD31 AD30 AD31 AD30 AD31
27 AD28 AD29 AD28 AD29 AD28 AD29
28 VCC 3.3 VCC 3.3 VCC 3.3 VCC 3.3 VCC 3.3 VCC 3.3
29 AD26 AD27 AD26 AD27 AD26 AD27
30 AD24 AD25 AD24 AD25 AD24 AD25
31 Ground Ground Ground Ground Ground Ground
32 Reserved AD STB1 AD STB1# AD STB1 AD STB1# AD STB1
33 C/BE3# AD23 C/BE3# AD23 C/BE3# AD23
34 Vddq 3.3 Vddq 3.3 Vddq Vddq Vddq 1.5 Vddq 1.5
35 AD22 AD21 AD22 AD21 AD22 AD21
36 AD20 AD19 AD20 AD19 AD20 AD19
37 Ground Ground Ground Ground Ground Ground
38 AD18 AD17 AD18 AD17 AD18 AD17
39 AD16 C/BE2# AD16 C/BE2# AD16 C/BE2#
40 Vddq 3.3 Vddq 3.3 Vddq Vddq Vddq 1.5 Vddq 1.5
41 FRAME# IRDY# FRAME# IRDY# FRAME# IRDY#
42 Reserved 3.3Vaux Reserved 3.3Vaux KEY KEY
43 Ground Ground Ground Ground KEY KEY
44 Reserved Reserved Reserved Reserved KEY KEY
45 VCC 3.3 VCC 3.3 VCC 3.3 VCC 3.3 KEY KEY
46 TRDY# DEVSEL# TRDY# DEVSEL# TRDY# DEVSEL#
47 STOP# Vddq 3.3 STOP# Vddq STOP# Vddq 1.5
48 PME# PERR# PME# PERR# PME# PERR#
49 Ground Ground Ground Ground Ground Ground
50 PAR SERR# PAR SERR# PAR SERR#
51 AD15 C/BE1# AD15 C/BE1# AD15 C/BE1#
52 Vddq 3.3 Vddq 3.3 Vddq Vddq Vddq 1.5 Vddq 1.5
53 AD13 AD14 AD13 AD14 AD13 AD14
54 AD11 AD12 AD11 AD12 AD11 AD12
55 Ground Ground Ground Ground Ground Ground
56 AD9 AD10 AD9 AD10 AD9 AD10
57 C/BE0# AD8 C/BE0# AD8 C/BE0# AD8
58 Vddq 3.3 Vddq 3.3 Vddq Vddq Vddq 1.5 Vddq 1.5
59 Reserved AD STB0 Reserved AD STB0# Reserved AD STB0#
60 AD6 AD7 AD6 AD7 AD6 AD7
61 Ground Ground Ground Ground Ground Ground
A62 AD4 AD5 AD4 AD5 AD4 AD5
63 AD2 AD3 AD2 AD3 AD2 AD3
64 Vddq 3.3 Vddq 3.3 Vddq Vddq Vddq 1.5 Vddq 1.5
65 AD0 AD1 AD0 AD1 AD0 AD1
66 Reserved Reserved Vrefgc Vrefcg Vrefgc Vrefcg

The AGP bus is 32 bits wide, just the same as PCI is, but instead of running at half the system (memory) bus speed the way PCI does, it runs at full bus speed. This means that on a standard Pentium II motherboard AGP runs at 66 MHz instead of the PCI buss 33 MHz. This of course immediately doubles the bandwidth of the port; instead of the limit of 127.2 MB/s as with PCI, AGP in its lowest speed mode has a bandwidth of 254.3 MB/s. The AGP specification is in fact based on the PCI 2.1 specification, which includes a high-bandwidth 66 MHz speed.

Компьютерные технологии развиваются настолько быстро, что владельцы компьютеров не успевают закончить полную модернизацию своего компьютера, как производители выпускают очередное новшество, и кажется, что процесс модернизации не закончится никогда. Так произошло, когда на материнских платах появился AGP-разъем. Какова история его появления и почему так быстро он ушел в небытие?

История появления

AGP-разъем - это специализированный разъем для подключения видеокарты к материнской плате и, соответственно, он устанавливается на этой плате. На английском языке аббревиатура AGP расшифровывается как Accelerated Graphics Port, или "быстрый графический порт". Почему его так назвали и как он появился?

До 1996 года используемым был PCI. Но скорость обмена информацией по этой графической шине была достаточно мала. А требования, которые постепенно возникали у разработчиков программного обеспечения, не могли быть удовлетворены с помощью этого интерфейса, не говоря уже о разработках на будущие периоды. Поэтому компания Intel разрабатывает AGP-разъем и устанавливает его на материнскую плату, параллельно с этим разрабатывается и видеокарта с таким же интерфейсом. И двадцать лет назад появляется новый комплект материнской платы и соответствующей ей видеокарты.

Преимущества видеокарты с разъемом AGP

Если говорить о преимуществах, которые приобрели компьютеры, обладающие AGP-разъемом, то следует заметить, что пропускная способность этой шины была увеличена сразу в два раза. За счет чего это удалось сделать? В первую очередь за счет повышения частоты обмена по этому интерфейсу. AGP-разъем позволил увеличить скорость обмена информацией до 66 мГц. Это позволило создавать более мощные видеокарты, программисты стали разрабатывать соответствующие приложения под И как раз в это время появляются новые программные продукты, в том числе и игровые. Эти преимущества заставили владельцев компьютеров заняться модернизацией собственного оборудования. Но для это приходилось производить замену не только материнской платы, процессора, но и видеокарты.

Именно в это время для тех, кто не мог позволить себе полную модернизацию компьютера, разрабатывается переходник с AGP (PCI-разъем внедрен будет позже), что дало возможность сэкономить на какое-то время средства на замену хотя бы видеокарты. Конечно, со временем так или иначе приходилось делать полную замену оборудования компьютера. Пример такого переходника приведен на фото.

Какие виды AGP-разъемов бывают?

Интерфейс AGP существовал вплоть до 2004 года. За эти восемь лет разработчики значительно модернизировали этот интерфейс, увеличивая его производительность. Если говорить о разрядности этой шины, то во всех своих вариантах она 32-разрядная. Компьютеры имеющие 64-битную шину, появились немного позже. Поэтому разработчикам приходилось использовать 32-битный интерфейс и искать другие возможности повышать производительность видеокарт и самого AGP-интерфейса. Какой был найден выход?

Разработчики решили проблему с помощью пакетной передачи данных. Так, первая карта AGP-1 за один такт передавала один пакет информации. Но этого оказалось мало, практически сразу была разработана AGP-2, которая передавала два пакета за такт. При этом скорость передачи данных увеличилась в два раза. Спустя два года разработчики выпускают уже AGP-4, и скорость увеличивается по сравнению с картой-предшественницей еще в два раза.

При этом производительность или интерфейса AGP-4 составляла один гигабит в секунду. Но и этого оказалось также мало. Еще через несколько лет в продаже появляются видеокарты AGP-8, которые оперировали восемью блоками информации за такт и пропускным каналом интерфейса в два гигабита за секунду.

Но при этом появилась проблема передачи мощности через AGP-разъем. Слот AGP-8 не мог обеспечить хороший контакт при передаче большой мощности по И разработчики специально для мощных разрабатывают слот AGP Pro. Это была последняя модификация этого интерфейса.

Дальнейшая история AGP-слота

Как бы там ни было, но со временем стало ясно, что компьютерам нужен новый интерфейс, который мог бы заменить AGP-разъем. Материнской плате требовался новый слот, который мог бы иметь еще большую пропускную способность, с одной стороны, и обеспечить все возрастающую потребляемую мощность - с другой. И начиная с 2004 года на смену AGP-слоту приходит PCI Express.

Преимуществом этого слота явилась возможность работы с 64-битными шинами, что значительно повышало возможности компьютера по работе с графикой. В это время начинают поступать на рынок мониторы больших размеров. А для того чтобы качественно отображать на мониторе такое изображение, необходимо было работать с большими разрешениями. Кроме того, производители видеоигр постоянно разрабатывают продукцию, требующую еще больших системных требований к видеосистеме компьютера. В этом случае разъем AGP, фото которого видно на материнской плате, безнадежно уходит в прошлое. Но, все ли так плохо для этого интерфейса?

Когда исчезнет AGP-слот?

Можно ли сказать, что на сегодняшний день эра AGP безвозвратно ушла? Наверное, наступят в скором времени такие дни, когда ни материнской платы с таким разъемом, ни видеокарты такого плана найти будет невозможно. Разве что в специализированных музеях или на компьютерной барахолке. Но на сегодняшний день этот интерфейс весьма активно применяется. Да, уже оборудование с ним достаточно давно не выпускается, и совсем скоро иссякнут последние запасы его на складах. А те экземпляры оборудования, которые находятся в компьютерах, постепенно придут в негодность. И вот тогда люди начнут забывать об AGP-слотах. Но до этого еще далеко.

Использование AGP-слота в современных условиях

Как уже писалось выше, компьютеры с AGP-интерфейсом невозможно использовать в тех машинах, которые работают с графическими, видео- и игровыми приложениями. Но количество компьютеров, работающих с такими приложениями в общей массе компьютеров, не так и велико. Самый большой сектор занимают компьютеры, которые работают с офисными приложениями, и скорость видеопотока для них не так уж и важна.

Кроме того, достаточно много компьютеров, которые имеют AGP-слот, работают и по сей день. А так как надежность этих машин достаточно велика, то многие компании не спешат отказываться от них в своих офисах. И похоже, такая ситуация будет продолжаться не один год. Конечно, рано или поздно AGP-слот будет вытеснен более новым и современным, но для этого понадобится определенное время.

Компромиссное решение конструкторов материнских плат

Разработчики компьютерной техники предполагали, что замена AGP-слота на PCI Express пойдет быстрыми темпами. Но этого не произошло, на последнем этапе своего развития AGP-видеокарты были настолько хороши, что многие пользователи не спешат от них отказываться и по сей день.

С другой стороны, такая модернизация требовала достаточно много средств, а значит, сдерживала многих пользователей. Учитывая это, производители материнских плат пошли на компромисс. Они решили на материнской плате установить одновременно два видеослота AGP и PCI Express. Правда, пользоваться одновременно обоими слотами было невозможно, и пользователь мог выбрать тот слот, видеокарта на который у него имелась.

Возможность использования AGP-разъема в других целях

У многих пользователей возникает вопрос о том, какие устройства можно подсоединить к разъему AGP, так как зачастую в компьютерных системах, описанных выше, он освобождается и не используется. Но стоит помнить, что этот интерфейс был специально разработан под управление видеокартой. Возможно ли применить его для других целей? В принципе, это возможно, но для этого необходимо переделать управление этим интерфейсом, и вряд ли эффективность такого управления повысится. Существуют другие интерфейсы, которые предназначены для решения разнообразных задач, поэтому лучше воспользоваться одним из них.

В последнее время в конференциях появилось огромное количество вопросов по стандарту AGP, и, в частности, по совместимости видеокарт и материнских плат, поддерживающих разные версии этого стандарта. Эта статья представляет собой попытку рассказать об этом интерфейсе, и дать ответ на интересующие многих вопросы, в частности, о совместимости старых материнских плат с новыми видеокартами.

Итак, магистральный интерфейс AGP. Называть его шиной не совсем верно — на несколько слотов расширения он не был рассчитан изначально, и, хотя в спецификации AGP 3.0 есть упоминание о возможности подобных конфигураций, в железе ничего подобного так и не появилось. Этот интерфейс был разработан фирмой Intel для подключения видеокарт. При его внедрении строились грандиозные планы — предполагался почти полный отказ от локальной видеопамяти, и использование вместо нее системной. Первым шагом в этом направлении стала видеокарта Intel 740 — на ней устанавливался относительно небольшой объем памяти, использовавшийся под буфер кадра и Z-буфер, а все текстуры хранились только в системной памяти. Но путь оказался тупиковым — относительно медленная системная память не смогла соперничать с широкими и быстрыми шинами памяти видеокарт — отказ от модулей расширения позволил реализовать 128- и 256-битный доступ, а существенно более мягкие требования к отказоустойчивости отдельных ячеек памяти позволили поднять частоту даже на тех же самых микросхемах. Все дело в том, что изменение содержимого одной-единственной ячейки видеопамяти на картинку сильно повлиять не способно — изменившую цвет на одном-единственном кадре точку заметить практически невозможно, тогда как в случае системной памяти такой сбой будет иметь куда более печальные последствия. Причем повысить частоты при таких требованиях к отказоустойчивости можно очень сильно — на стоявшей у меня одно время карте RADEON VE от PowerMagic были установлены микросхемы Hynix HY5DU281622AT-K. Как несложно понять из маркировки, эти микросхемы DDR SDRAM предназначались для использования в качестве системной памяти с максимальной частотой 133MHz (266 MHz DDR). В качестве видеопамяти же они работали на номинальной частоте 166MHz (333MHz DDR), более того, не давали заметных артефактов при разгоне до частоты 210MHz (420MHz DDR). Так что текстуры соврменные карты хранят в собственной памяти, используя возможности AGP только в случае ее нехватки, а Intel 740 так и остался единственным в своем роде ускорителем, став позже основой встроенного в многие чипсеты от Intel графического ядра I752 — в этом применении его особенности пришлись как раз кстати.

1. AGP 1.0: Как это было…

За основу интерфейса AGP 1.0 была взята шина PCI 2.1, а точнее, ее вариант PCI 32/66 — 32х разрядная шина с частотой работы 66MHz. В стандарте AGP 3.0 предусмотрено расширение разрядности до 64х бит при сохранении обратной совместимости, но пока такие конфигурации не реализованы. Электрически (но не по слоту и разводке) AGP 1.0 остался обратно совместим с PCI, но получил и кое-какие расширения:

  1. Очередь запросов. На AGP, в отличие от PCI, для передачи следующего адреса дожидаться окончания текущей передачи вовсе не обязательно — можно сделать сразу несколько запросов на чтение (запись), а затем последовательно считать (передать) данные.
  2. Частичное демультиплексирование шин адреса и данных. Реализация весьма оригинальна — в дополнение к стандартной 32х-битной мультиплексированной шине (AD) имеется 8-ми разрядная «боковая» шина адреса (SBA). Алгоритм таков: при пустой очереди запросов несколько первых передач адреса производится станадартно, по мультиплексированной шине AD, а после того, как по ней пойдут запрошенные данные, передачи следующих адресов в очередь будут производиться по шине SBA.
  3. Режим DDR для линий данных. Уже в стандарте AGP 1.0 был реализован режим 2x — передачи по линиям AD и SBA с удвоенной частотой, по фронту и спаду синхросигнала. Вопреки распостраненному заблуждению, материнских плат с поддержкой только режима 1x просто не существует — в первом чипсете с поддержкой AGP, Intel 440LX, режим 2x уже был реализован.

    Этот вариант AGP довольно быстро стал общим стандартом, VIA, SIS и ALi выпустили собственные чипсеты с поддержкой AGP.

2. AGP 2.0: …и начинаются чудеса…

Довольно быстро развитие системной памяти привело к тому, что ее пропускная способность превысила пропускную способность AGP 1.0 даже в режиме 2x. Естественно, был разработан новый стандарт — AGP 2.0. И вот тут-то чудеса и начались... Кроме мелких усовершенствованиях режима Bus Master, оставшегося от PCI, было одно-единственное, но глобальное изменение спецификации - для реализации передач QDR (4 передачи за такт) сигнальные уровни интерфейса были снижены до 1.5V вместо 3.3V в AGP 1.0. Из-за того, что при таких частотах емкость проводников начинает играть уже существенное значение, понижение уровня логической «1» способно уменьшить потребление выходных каскадов и повысить быстродействие и стабильность. Вопреки распостраненным заблуждениям, напряжение линий, по которым подается питание для чипа и памяти (или их стабилизаторов) не изменилось — все 3 линии, VDD 3.3, VDD 5 и VDD 12 так и остались в разъеме. С 3.3V до 1.5V изменилось только VDDQ — напряжение питания для выходных каскадов чипа. Мало кто знает, но подобное решение уходит корнями еще в спецификацию PCI — изначально эта шина имела уровень логической «1» 5.0V, а в спецификации PCI 2.1 для реализации частоты 66MHz было предусмотрено его снижение до 3.3V. Проблем не возникло, во-первых, потому, что варианты PCI 32/66 и 64/66 широкого распостранения до сих пор не получили, присутствуя только в серверных решениях, а во-вторых, из-за того, что сигнальные уровни шины однозначно задаются ключами слота PCI:

Сверху — 66MHz слот, снизу — 33MHz.


Для совместимости с AGP 1.0 новых материнских плат и видеокарт были предприняты следующие действия:

Пока чипсеты поддерживали режимы AGP 1.0, все было прекрасно. Но после выпуска Intel"ом чипсетов серии 845xx, не поддерживавших сигнальные уровни 3.3V, выяснилось, что не все так гладко, как казалось…

Первой, и грубейшей ошибкой производителей была установка на эти платы универсальных слотов, вместо требуемых спецификацией слотов с ключем «1.5V Only». Казалось бы — ничего страшного, VDDQ-то все равно 1.5V, карта стандарта 1.0 просто не запустится, но, как выяснилось, карты стандарта 1.0 даже при VDDQ 1.5V все равно выдавали 3.3V на входы чипсета, рассчитанные на 1.5V. Естественно, несчастный северный мост не переносил такого издевательства, и горел напрочь, после чего плату можно было смело выкидывать — оборудование для пайки BGA и запасные мосты были в наличии у очень немногих фирм. К счастью, урок из этого извлекли достаточно быстро, и ключи на слотах появились. Но проблемы не исчезли. Как выяснилось, некоторые карты, не смотря на то, что имели универсальный разъем, с AGP 4x были или совместимы частично, или несовместимы вообще. В лучшем случае карты просто не запускались или работали нестабильно, в худшем — тупо врубали трехвольтовые уровни, естественно, с последующим летальным исходом для северного моста. Встречались также, например, карты, на которых сигнальные уровни задавались джампером. Естественно, по умолчанию он стоял в положении «3.3V». К счастью, сигнал TYPEDET# на таких картах, как правило, выдает корректную информацию, так что некоторые производители, например, ASUStek, сделали на этом принципе схему защиты — при высоком уровне TYPEDET# плата не стартует. Понять, какие карты можно ставить на эти чипсеты, а какие нет можно из приведенной ниже таблицы. Для установки на эти чипсеты (а также на все последующие с поддержкой AGP 8x) карта должна поддерживать AGP 2.0:

Таблица поддержки стандартов AGP для видеокарт:


Производитель Чип AGP 1.0 AGP 2.0 AGP 3.0
ATI Rage II
ATI Rage PRO
ATI Rage 128
ATI Rage 128 PRO
ATI RADEON (7200)
ATI RADEON VE (7000)
ATI RADEON 7500
ATI RADEON 8500
ATI RADEON 9000/PRO
ATI RADEON 9200/PRO
ATI RADEON 9500/PRO
ATI RADEON 9600/PRO
ATI RADEON 9700/PRO
ATI RADEON 9800/PRO
NVIDIA Riva 128/ZX
NVIDIA TNT
NVIDIA TNT 2
NVIDIA GeForce
NVIDIA GeForce 2/MX
NVIDIA GeForce 3
NVIDIA GeForce 4 MX
NVIDIA GeForce 4 MX 8x
NVIDIA GeForce 4 Ti
NVIDIA GeForce 4 Ti 8x
NVIDIA GeForce FX 5200/Ultra
NVIDIA GeForce FX 5600/Ultra
NVIDIA GeForce FX 5800/Ultra
NVIDIA GeForce FX 5900/Ultra
Matrox Millenium II
Matrox G100
Matrox G200
Matrox G400
Matrox G450
Matrox G550
Matrox Parhelia
Intel 740
S3 Virge
S3 Trio 3D
S3 Savage 4
S3 Savage 2000
3DFX Voodoo Banshee
3DFX Voodoo 3
3DFX VSA-based cards
#9 Revolution 3D
#9 Revolution IV
SIS 315
SIS Xabre
PowerVR Kyro
PowerVR Kyro II/SE

(*) Карта вставляется в слот AGP, но использует его только как быструю PCI, без расширенных возможностей, описанных выше.
У двухчиповых карт Rage MAXX проблемы с реализацией AGP 2.0.
Возможно, поддержка AGP 1.0 осталась, а ключ в разъеме убран из-за большого потребления карты.
На некоторых картах сигнальные уровни задаются джампером. Модификация TNT 2 Vanta LT не поддерживает AGP 2.0, но большинство карт на ней имеет универсальный разъем.
У ранних ревизий карт проблемы с реализацией AGP 2.0.
Заявлено — 3.0, реально — 2.0.
У так и не вышедшего Xabre 80 — только 2.0.

3. AGP 3.0 — …все чудесатее и чудесатее…

Итак, и AGP 2.0 настала пора уйти в отставку — его пропускной способности опять перестало хватать. В новом стандарте 3.0 уровень логической «1» в очередной раз был изменен — уменьшен до 0.8V для режима 8x. Опорная частота интерфейса так и не изменилась, просто был введен режим ODR — передача по линиям AD и SBA с частотой, в 8 раз превышающей опорную. Естественно, добавили две новых линии — GC_AGP8X_DET# и MB_AGP8X_DET# — соответственно, определяющие поддержку AGP 3.0 у видеокарты и материнской платы. Разъем остался тем же самым — AGP 4X/1.5V Only (ох, зря, не наступили бы они опять на те же грабли при отказе от поддержки 1.5V сигнальных уровней), защита обеспечивается линией GC_AGP8X_DET# — при ее высоком уровне материнская плата с поддержкой только AGP 8x стартовать не должна. И, естественно, чудеса с сигнальными уровнями продолжились… По стандарту от Intel, и карта, и материнская плата при наличии поддержки AGP 8x поддерживать режимы с уровнями 3.3V не должна (это совсем не означает отсутствия поддержки режима 1x! Еще в стандарте AGP 2.0 были определены режимы 1x/1.5V и 2x/1.5V). На практике же, хотя материнские платы действительно эту рекомендацию выполняют, с видеокартами все далеко не так. Почти все современные видеокарты с поддержкой AGP 8x имеют и поддержку материнских плат стандарта AGP 1.0 (единственное исключение — RADEON 9600). Другое дело, что совместимость по сигнальным уровням — необходимое, а не достаточное условие работоспособности. Например, старые блоки питания чего-нибудь типа RADEON 9700 просто, как правило, не выдерживают. Но примеры работающих конфигураций есть, так что при желании любую карту, даже RADEON 9800 PRO, можно поставить на Intel 440BX, например. Но имеет ли смысл?

Таблица поддержки стандартов AGP для чипсетов:

Производитель Чипсет AGP 1.0 AGP 2.0 AGP 3.0
Intel 440LX
Intel 440BX
Intel 815xx
Intel 820
Intel 845xx
Intel 850x
Intel 865x
Intel 875x
Intel 7205
VIA VP3/MVP3
VIA 691(Apollo PRO)
VIA 693x(Apollo PRO +/133)
VIA 694x(Apollo PRO 133A/133T)
VIA Apollo 266x
VIA KT133x
VIA KT266x
VIA KT333
VIA KT333CF
VIA KT400x
VIA KT600
VIA P4X266x
VIA P4X400
AMD 750
AMD 760
ALI Aladdin V
ALI Aladdin Pro II
ALI Aladdin Pro 5T
ALI M1649
ALI MAGiK 1
ALI ALADDiN-P4 (M1671)
SIS 635
SIS 735
SIS 745
SIS 746/FX
SIS 645/DX
SIS 648
SIS 650
SIS 655
NVIDIA Nforce
NVIDIA Nforce II
ATI A3
ATI A4
ATI IGP9100

Это самые первые чипсеты с поддержкой AGP. Возможность стабильной работы новых карт целиком и полностью зависит от конкрентых материнских плат. Естественно, что от ACORP многого ждать не стоит, тогда как на ASUSTEK, например, можно запустить и RADEON 9700…

Первый чипсет с AGP не от Intel. Как ни странно, серьезных аппаратных проблем не имел (не считая конкретные реализации AGP на некоторых материнских платах, но это уже не вина VIA). Крайне рекомендуется обновить BIOS перед установкой новых карт.

У ранних плат, возможно, для стабильной работы режима 4x потребуется вручную подобрать AGP Driving Value.

Поскольку матерных выражений редактор не одобряет, я ничего не буду говорить про реализацию AGP у этого чипсета и материнских плат на нем. Типы работающих видеокарт узнаются только подбором…

Ну и, до кучи:

Таблица всех режимов AGP:


Режим Уровень лог. «1» AGP 1.0 AGP 1.0/2.0 AGP 2.0 AGP 2.0/3.0 AGP 3.0
1x 3.3V
1x 1.5V
2x 3.3V
2x 1.5V
4x 1.5V
8x 0.8V

Как видно из этой таблицы, в AGP 2.0 и 3.0 от режимов 1x и 2x не отказались, а просто перевели их на сигнальные уровни 1.5V. Так что не удивляйтесь, увидев вариант «1x» в настройках режима AGP на новых платах. 4. А теперь о том, что из этого следует, и как это все применить на практике

  1. Совместимость новых материнских плат и старых карт можно определить из таблиц, приведенных выше. В спорных случаях рекомендуется установить карту на материнскую плату с универсальным слотом 1.0/2.0, и проконтролировать включение режима AGP 4x с помощью RivaTuner или PowerStrip. Если карта работает в этом режиме, на новые платы ее можно ставить безбоязненно.
  2. Сжечь новую видеокарту установкой в старую материнскую плату невозможно. Единственная на данный момент карта без поддержки AGP 1.0 — RADEON 9600/PRO, но и ей это не грозит, так как в старые платы она не влезет физически.
  3. Не смотря на это, стабильность работы конфигураций «старая плата + новая видеокарта» не гарантируется.
5. Старые платы и новые видеокарты — как заставить работать?

В этом разделе собрано большинство проблем, которые могут возникнуть при установке новых видеокарт на старые материнские платы:

Недостаточная мощность блока питания.
Проблема:
Мощность блока питания недостаточна.
Симптомы:
Уход напряжений питания из допустимых пределов.
Запуск системы только после нажатия reset.
Высокий уровень помех по питанию, и, как следствие, произвольные сбои в работе (трудноопределимо).
Решение:
Заменить БП.

На материнской плате установлен стабилизатор на линии VDD3.3 (Сразу предупреждая возможные вопросы — на большинстве плат питающие напряжения на AGP подаются непосредственно с разъема питания системной платы. То, что в BIOS"е названо VAGP — всего-навсего VDDQ, и повышать его не стоит).
Проблема:
Из-за маломощного стабилизатора на линии VDD3.3 видеокарте не хватает питания.
Решение:
Для AT платы — установка более мощного стабилизатора (трудновыполнимо).
Для ATX платы — запитка видеокарты непосредственно от БП, как правило, отключением стабилизатора и напаиванием проводника от разъема питания. На некоторых материнских платах стабилизатор отключается джамперами.

Неверный уровень VREFGC.
Проблема:
Наряжение VREFGC, подающееся картой стандарта 2.0 на контакты A66 и B66 закорачивается на землю платой стандарта 1.0. В стандарте 1.0 эти контакты зарезервированы. Зачем зарезервированные контакты понадобилось заземлять — тайна, сокрытая в мраке ночи. Так сделано, например, на Chaintech 6BTM
Симптомы:
Система не стартует.
Решение:
Изолировать два последних контакта в слоте.

Маломощный стабилизатор VDDQ.
Проблема:
Неустойчивость передач по шине из-за маломощного стабилизатора VDDQ. В особо запущенных случаях — использование общего стабилизатора VDDQ для AGP и оперативной памяти. Для информации: по стандарту AGP максимальный разрешенный ток линии VDDQ — 8 ампер.
Симптомы:
Нестабильность системы, особенно в 3D-играх. Для общего стабилизатора VDDQ AGP и памяти — нестабильность проявляется при установке нескольких модулей памяти или модулей с большим количеством микросхем совместно с новой картой.
Решение:
Установить более мощный стабилизатор. Для второго случая — развязать VDDQ памяти и AGP. И то, и другое — трудновыполнимо, проще заменить плату.

Высокая частота AGP
Проблема:
На чипсете Intel 440BX при использовании процессоров с шиной 133MHz частота AGP составляет 89MHz вместо стандартных 66.
Симптомы:
Нестабильность системы, особенно в 3D играх. Иногда система вообще не стартует.
Решение:
Установить режим 1x. При отсутствии положительного результата — СНИЗИТЬ напряжения VDDQ и VREF, но не более чем на 5% от номинала (до 3.135V и 1.5675V минимум). Учтите, что VREF=VDDQ/2, причем допустимое отклонение — не более 2%. Это особенно критично для плат ABIT и ASUStek, у которых VDDQ (и, соответственно, VREF) может быть завышено по умолчанию, что стабильности в данном случае совсем не прибавляет… Часто задают вопрос — а что же карта с поддержкой 4x или 8x какие-то 89MHz переварить не способна? Ответ прост — во-первых, в штатном режиме работы частота всех линий, кроме AD и SBA, так и осталась 66MHz, даже в стандарте 3.0. Во-вторых — хотя линии на AD и SBA в режиме 4x и выше работают с частотой, превышающей 89MHz (или 178 — для режима 2x), но работают-то они при других сигнальных уровнях…